
1

Slide 1

Iterative Improvement
Search

Hill Climbing, Simulated Annealing,
WALKSAT, and Genetic Algorithms

Andrew W. Moore
Professor

School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

Note to other teachers and users of these slides. Andrew would be delighted if you found this source
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. If you make use of a significant portion of these
slides in your own lecture, please include this message, or the following link to the source repository of
Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received.

Slide 2

Example Problems
Channel
Routing

Lots of Chip Real-estate Same connectivity,
much less space

2

Slide 3

Example Problems
Also:

parking lot layout,
product design, aero-
dynamic design,
“Million Queens”
problem, radiotherapy
treatment planning, …

Slide 4

Informal characterization
These are problems in which…
• There is some combinatorial structure being optimized.
• There is a cost function: Structure Real, to be

optimized, or at least a reasonable solution is to be
found.

• (So basic CSP methods only solve part of the problem
… they satisfy constraints but don’t look for optimal
constraint-satisfier.)

• Searching all possible structures is intractable.
• Depth first search approaches are too expensive.
• There’s no known algorithm for finding the optimal

solution efficiently.
• Very informally, similar solutions have similar costs.

3

Slide 5

Iterative Improvement
Intuition: consider the configurations to be laid out on the
surface of a landscape. We want to find the highest point.

(Unlike other AI search problems like 8-puzzle, we don’t
care how we get there.)

“Iterative Improvement” methods:

Start at a random configuration; repeatedly consider
various moves; accept some & reject some. When you’re
stuck, restart.

We must invent a moveset that describes what moves we
will consider from any configuration. Let’s invent movesets
for out four sample problems.

Slide 6

Hill-climbing
Hill-climbing: Attempt to maximize Eval(X) by moving to
the highest configuration in our moveset. If they’re all
lower, we are stuck at a “local optimum.”

1. Let X := initial config
2. Let E := Eval(X)
3. Let N = moveset_size(X)
4. For (i = 0 ; i<N ; i := i+1)

Let Ei := Eval(move(X,i))
5. If all Ei’s are ≤ E, terminate, return X
6. Else let i* = argmaxi Ei
7. X := move(X,i*)
8. E := Ei*
9. Goto 3 (Not the most sophisticated algorithm in

the world.)

4

Slide 7

Hill-climbing Issues
• Trivial to program
• Requires no memory (since no backtracking)
• MoveSet design is critical. This is the real ingenuity – not the

decision to use hill-climbing.
• Evaluation function design often critical.

– Problems: dense local optima or plateaux
• If the number of moves is enormous, the algorithm may be

inefficient. What to do?
• If the number of moves is tiny, the algorithm can get stuck easily.

What to do?
• It’s often cheaper to evaluate an incremental change of a previously

evaluated object than to evaluate from scratch. Does hill-climbing
permit that?

• What if approximate evaluation is cheaper than accurate evaluation?
• Inner-loop optimization often possible.

Slide 8

Randomized Hill-climbing
1. Let X := initial config
2. Let E := Eval(X)
3. Let i = random move from the moveset
4. Let Ei := Eval(move(X,i))
5. If E < Ei then

X := move(X,i)
E := Ei

6. Goto 3 unless bored.

What stopping criterion should we use?

Any obvious pros or cons compared with our previous hill
climber?

5

Slide 9

Hill-climbing example: GSAT

WALKSAT (randomized GSAT):
Pick a random unsatisfied clause;
Consider 3 moves: flipping each variable.
If any improve Eval, accept the best.
If none improve Eval, then 50% of the time, pick the move that is the
least bad; 50% of the time, pick a random one.

This is the best known algorithm for satisfying Boolean formulae! [Selman]

Slide 10

Hill-climbing Example: TSP
Minimize: Eval(Config) = length of tour

MoveSet: 2-change … k-change
Example: 2-change

6

Slide 11

3-change Example

Slide 12

Hill-climbing Example: TSP
This class of algorithms for the TSP is usually referred to
as k-opt

(MoveSet: 2-change, … k-change) for some constant k.

Lin showed empirically:
• 3-opt solutions are much better than 2-opt
• 4-opt solutions are not sufficiently better than 3-opt to justify the

extra compute time
• A 3-opt tour for the 48-city problem of Held and Karp has about

a probability of 0.05 of being optimal (100 random restarts will
yield the optimal solution with probability 0.99)

• Further for his particular class of TSP, a 3-opt tour is optimal with
probability 2-n/10 where n is a number of cities.

There is no theoretical justification for any of these results.

7

Slide 13

Simulated Annealing
1. Let X := initial config
2. Let E := Eval(X)
3. Let i = random move from the
moveset
4. Let Ei := Eval(move(X,i))
5. If E < Ei then

X := move(X,i)
E := Ei

Else with some probability,
accept the move even though
things get worse:

X := move(X,i)
E := Ei

6. Goto 3 unless bored.

Slide 14

Simulated Annealing
1. Let X := initial config
2. Let E := Eval(X)
3. Let i = random move from the
moveset
4. Let Ei := Eval(move(X,i))
5. If E < Ei then

X := move(X,i)
E := Ei

Else with some probability,
accept the move even though
things get worse:

X := move(X,i)
E := Ei

6. Goto 3 unless bored.

This may make the search
fall out of mediocre local
minima and into better local
maxima.

How should we choose the
probability of accepting a
worsening move?

• Idea One. Probability =
0.1

• Idea Two. Probability
decreases with time

• Idea Three. Probability
decreases with time, and
also as E – Ei increases.

8

Slide 15

Simulated Annealing
If Ei >= E then definitely accept the change.
If Ei < E then accept the change with probability

exp (-(E - Ei)/Ti)
(called the Boltzman distribution)

…where Ti is a “temperature” parameter that
gradually decreases. Typical cooling schedule:
Ti = T0 · r’

High temp: accept all moves (Random Walk)
Low temp: Stochastic Hill-Climbing
When enough iterations have passed without improvement,
terminate.

This idea was introduced by Metropolis in 1953. It is “based” on “similarities”
and “analogies” with the way that alloys manage to find a nearly global minimum energy
level when they are cooled slowly.

Slide 16

Aside: Analogy-based algorithms
Your lecturer predicts that for any natural phenomenon you can think
of, there will be at least one AI research group that will have a
combinatorial optimization algorithm “based” on “analogies” and
“similarities” with the phenomenon. Here’s the beginning of the list…
• Metal cooling annealing
• Evolution / Co-evolution / Sexual Reproduction
• Thermodynamics
• Societal Markets
• Management Hierarchies
• Ant/Insect Colonies
• Immune System
• Animal Behavior Conditioning
• Neuron / Brain Models
• Hill-climbing (okay, that’s a stretch…)
• Particle Physics
• Inability of Elephants to Play Chess

9

Slide 17

Simulated Annealing Issues
• MoveSet design is critical. This is the real ingenuity –

not the decision to use simulated annealing.

• Evaluation function design often critical.

• Annealing schedule often critical.

• It’s often cheaper to evaluate an incremental change of a
previously evaluated object than to evaluate from
scratch. Does simulated annealing permit that?

• What if approximate evaluation is cheaper than accurate
evaluation?

• Inner-loop optimization often possible.

Slide 18

Manhattan Channel Routing

10

Slide 19

Channel Routing: Moveset
Simple moveset: pick up a wire and move it to another track at random.
(Problem: almost all such moves are illegal!)
Fancy moveset: makes search more efficient

Draw vertical constraints in a
graph (arrow means “must lie
above”)

1 104

8

9 7

6

5

3

Packing wires onto the same track
= = merging nodes. (The graph
must remain acyclic, and you must
check horizontal constraints too.)

7

4,10

5

9

1,6,8

Slide 20

Channel Routing: Cost Function
“Clearly, the objective function to be minimized is the channel width w.
However, w is too crude a measure of the quality of intermediate
solutions. Instead, … the following cost function is used:”

c = w2 + λp · p2 + λu · u

where

p is a lower bound on the size of the constraint graph after future
merge operations,

u measures the variance of how tightly the horizontal tracks are
packed,

and λp and λu are hand-tweaked constants.
--- Wong, Simulated Annealing for VLSI Design

11

Slide 21

“Modified Lam” schedule

(This is just to give you and idea of how
wacky these things can be.)

Idea: dynamically lower and raise temp to
meet a target accept rate over time.

Advantages: few parameters to tweak; you
know in advance how long the algorithm will
run; works well empirically.

Slide 22

SA Discussion
Simulated annealing is sometimes empirically much better
at avoiding local minima than hill-climbing. It is a
successful, frequently-used, algorithm. Worth putting in
your algorithmic toolbox.

Sadly, not much opportunity to say anything formal about it
(though there is a proof that with an infinitely slow cooling
rate, you’ll find the global optimum).

There are mountains of practical, and problem-specific,
papers on improvements.

12

Slide 23

Genetic Algorithms
In the basic GA, objects are coded up (carefully) as binary
strings. Goal is to optimize some function of the bit-strings.

(Diagram shamelessly
copied from “Dean et al: AI:
Theory and Practice”.)

Slide 24

Genetic Algorithm
A set of bitstrings. This set is called a Generation. the algorithm
produces a new generation from an old generation thusly:
• Let G be the current generation of N bitstrings.
• For each bitstring (call them b0, b1, … bN-1) define

pi = Eval(bi) / Σj Eval(bj).
• Let G’ be the next generation. Begin with it empty.
• For k = 0 ; k < N/2 ; k = k+1

• Choose two parents each with probability
Prob(Parent = bi) = pi

• Randomly swap bits in the two parents to obtain two new bitstrings
• For each bit in turn in the new bitstring, randomly invert it with some low

probability
• Add the two new bitstrings to G’

Let your first generation consist of random bitstrings.

13

Slide 25

GA Issues
• Bitstring representation is critical. This is the real ingenuity – not the

decision to use genetic algorithms. (How to encode TSP?)
• Evaluation function design often critical. In-laws always critical.
• It’s often cheaper to evaluate an incremental change of a previously

evaluated object than to evaluate from scratch. Do Genetic
Algorithms permit that?

• What if approximate evaluation is cheaper than accurate evaluation?
• Inner-loop optimization often possible.
Numerous twiddles:
• Use rankings not evaluations in creating your pi parent selection

probabilities.
• Cross over contiguous chunks of the string instead of random bits?
• Needn’t be bit strings .. could use strings over other finite alphabets.
• Optimize over sentences from a grammar representing functions or

programs. Called Genetic Programming.

Slide 26

General Discussion
• Often, the “second best way” to solve a problem.
• But relatively easy to implement. Can save a great deal

of programming effort.
• But great care is needed in designing representations

and movesets. If someone tells you that SA/Hillclimbing
solved their problem, that person is probably not giving
enough credit to their own problem-formulation-ability.

• DON’T solve a problem with these methods that could
be solved by Linear Programming, A-Star search or
Constraint Propagation!

• What if evaluating the objective function is really
expensive?

14

Slide 27

What you should know about
Iterative Improvement algs.

• Hill-climbing
• Simulated Annealing
• SAT and Channel Routing domains
• Given a simple problem (e.g. graph coloring from the CSP

lectures) be able to give sensible suggestions as to how
to code it up for the above algorithms.

References:
Simulated Annealing: See Numerical Recipes in C, or for practical details of Modified
Lam schedule etc.: Ochotta 1994 Ph.D. thesis, CMU ECE.
Hillclimbing: Discussion in Russell and Norvig.
GSAT, WALKSAT: papers by Bart Selman and Henry Kautz (www.research.att.com)
Channel Routing: Wong et al., Simulated Annealing for VLSI Design, Kluwer 1988.

