
Computational Intelligence Chapter 4, Lecture 1, Page 1

Searching

➤ Often we are not given an algorithm to solve a problem,

but only a specification of what is a solution — we have

to search for a solution.

➤ Search is a way to implement don’t know

nondeterminism.

➤ So far we have seen how to convert a semantic problem

of finding logical consequence to a search problem of

finding derivations.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 1, Page 2

Search Graphs

➤ A graph consists of a set N of nodes and a set A of

ordered pairs of nodes, called arcs .

➤ Node n2 is a neighbor of n1 if there is an arc from n1 to

n2. That is, if 〈n1, n2〉 ∈ A.

➤ A path is a sequence of nodes 〈n0, n1, . . . , nk〉 such that

〈ni−1, ni〉 ∈ A.

➤ Given a set of start nodes and goal nodes, a solution

is a path from a start node to a goal node.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 1, Page 3

Example Graph for the Delivery Robot

o109o103tsmail o111

l2d3 l2d4

l3d2

l3d1

l3d3

l2d2l2d1

o119

storage

o125

r123

o123

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 1, Page 4

Search Graph for SLD Resolution

a← b ∧ c. a← g.

a← h. b← j.

b← k. d ← m.

d ← p. f ← m.

f ← p. g← m.

g← f . k← m.

h← m. p.

?a ∧ d

yes←a∧d

yes←j∧c∧d

yes←k∧c∧d

yes←m∧c∧d

yes←g∧dyes←b∧c∧d

yes←m∧d

yes←m∧d

yes←f∧d

yes←p∧d

yes←d

yes←m yes←p

yes←h∧d

yes←m∧d

yes←

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 1, Page 5

Graph Searching

➤ Generic search algorithm: given a graph, start nodes, and

goal nodes, incrementally explore paths from the start

nodes.

➤ Maintain a frontier of paths from the start node that

have been explored.

➤ As search proceeds, the frontier expands into the

unexplored nodes until a goal node is encountered.

➤ The way in which the frontier is expanded defines the

search strategy.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 1, Page 6

Problem Solving by Graph Searching

frontier

explored nodes

unexplored nodes

start
node

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 1, Page 7

Graph Search Algorithm

Input: a graph,

a set of start nodes,

Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier;

if goal(nk)

return 〈n0, . . . , nk〉;
for every neighbor n of nk

add 〈n0, . . . , nk, n〉 to frontier;

end while

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 1, Page 8

➤ We assume that after the search algorithm returns an

answer, it can be asked for more answers and the

procedure continues.

➤ Which value is selected from the frontier at each stage

defines the search strategy.

➤ The neighbors defines the graph.

➤ is_goal defines what is a solution.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

