Summary of Search Strategies

Strategy	Frontier Selection	Halts?	Space
Depth-first	Last node added	No	Linear
Breadth-first	First node added	Yes	Exp
Heuristic depth-first	Local min $h(n)$	No	Linear
Best-first	Global min $h(n)$	No	Exp
Lowest-cost-first	Minimal $g(n)$	Yes	Exp
A^{*}	Minimal $f(n)$	Yes	Exp

Cycle Checking

> You can prune a path that ends in a node already on the path. This pruning cannot remove an optimal solution.
> Using depth-first methods, with the graph explicitly stored, this can be done in constant time.
$>$ For other methods, the cost is linear in path length.

Multiple-Path Pruning

Y You can prune a path to node n that you have already found a path to.
$>$ Multiple-path pruning subsumes a cycle check.
$>$ This entails storing all nodes you have found paths to.

Multiple-Path Pruning \& Optimal Solution

Problem: what if a subsequent path to n is shorter that the first path to n ?
$>$ You can remove all paths from the frontier that use the longer path.
$>$ You can change the initial segment of the paths on the frontier to use the shorter path.
$>$ You can ensure this doesn't happen. You make sure that the shortest path to a node is found first.

Multiple-Path Pruning \& A^{*}

Suppose path p to n was selected, but there is a shorter path to n. Suppose this shorter path is via path p^{\prime} on the frontier.

Suppose path p^{\prime} ends at node n^{\prime}.
$\operatorname{cost}(p)+h(n) \leq \operatorname{cost}\left(p^{\prime}\right)+h\left(n^{\prime}\right)$ because p was selected before p^{\prime}.
$\operatorname{cost}\left(p^{\prime}\right)+d\left(n^{\prime}, n\right)<\operatorname{cost}(p)$ because the path to n via p^{\prime} is shorter.

$$
d\left(n^{\prime}, n\right)<\operatorname{cost}(p)-\operatorname{cost}\left(p^{\prime}\right) \leq h\left(n^{\prime}\right)-h(n)
$$

You can ensure this doesn't occur if $\left|h\left(n^{\prime}\right)-h(n)\right| \leq d\left(n^{\prime}, n\right)_{5}$

Monotone Restriction

$>$ Heuristic function h satisfies the monotone restriction if $\left|h\left(n^{\prime}\right)-h(n)\right| \leq d(m, n)$ for every $\operatorname{arc}\langle m, n\rangle$.
$>$ If h satisfies the monotone restriction, A^{*} with multiple path pruning always finds the shortest path to a goal.

Iterative Deepening

> So far all search strategies that are guaranteed to halt use exponential space.

Idea: let's recompute elements of the frontier rather than saving them.
$>$ Look for paths of depth 0 , then 1 , then 2 , then 3 , etc.
> You need a depth-bounded depth-first searcher.
$>$ If a path cannot be found at depth B, look for a path at depth $B+1$. Increase the depth-bound when the search fails unnaturally (depth-bound was reached).

Iterative Deepening Complexity

Complexity with solution at depth $k \&$ branching factor b :

level	breadth-first	iterative deepening	\# nodes
1	1	k	b
2	1	$k-1$	b^{2}
$k-1$	1	2	b^{k-1}
k	1	1	b^{k}
	$\geq b^{k}$	$\leq b^{k}\left(\frac{b}{b-1}\right)^{2}$	

Direction of Search

The definition of searching is symmetric: find path from start nodes to goal node or from goal node to start nodes.

Forward branching factor: number of arcs out of a node.
Backward branching factor: number of arcs into a node.
Search complexity is b^{n}. Should use forward search if forward branching factor is less than backward branching factor, and vice versa.

Note: sometimes when graph is dynamically constructed, you may not be able to construct the backwards graph.

Bidirectional Search

> You can search backward from the goal and forward from the start simultaneously.
$>$ This wins as $2 b^{k / 2} \ll b^{k}$. This can result in an exponential saving in time and space.
> The main problem is making sure the frontiers meet.
> This is often used with one breadth-first method that builds a set of locations that can lead to the goal. In the other direction another method can be used to find a path to these interesting locations.

Island Driven Search

Idea: find a set of islands between s and g.

$$
s \longrightarrow i_{1} \longrightarrow i_{2} \longrightarrow \ldots \longrightarrow i_{m-1} \longrightarrow g
$$

There are m smaller problems rather than 1 big problem.
This can win as $m b^{k / m} \ll b^{k}$.
The problem is to identify the islands that the path must pass through. It is difficult to guarantee optimality.

You can solve the subproblems using islands \Longrightarrow hierarchy of abstractions.

Dynamic Programming

Idea: for statically stored graphs, build a table of $\operatorname{dist}(n)$ the actual distance of the shortest path from node n to a goal.

This can be built backwards from the goal:

$$
\operatorname{dist}(n)=\left\{\begin{array}{lr}
0 & \text { if } i s _\operatorname{goal}(n) \\
\min _{\langle n, m\rangle \in A}(|\langle n, m\rangle|+\operatorname{dist}(m)) & \text { otherwise }
\end{array}\right.
$$

This can be used locally to determine what to do.
There are two main problems:

- You need enough space to store the graph.
- The dist function needs to be recomputed for each goal.

