

- Many search spaces are too big for systematic search.
- A useful method in practice for some consistency and optimization problems is hill climbing:
- Assume a heuristic value for each assignment of values to all variables.
- > Maintain an assignment of a value to each variable.
- Select a "neighbor" of the current assignment that improves the heuristic value to be the next current assignment.



## Selecting Neighbors in Hill Climbing

- When the domains are small or unordered, the neighbors of a node correspond to choosing another value for one of the variables.
- When the domains are large and ordered, the neighbors of a node are the adjacent values for one of the dimensions.
- If the domains are continuous, you can use
  Gradient ascent: change each variable proportional to the gradient of the heuristic function in that direction. The value of variable X<sub>i</sub> goes from v<sub>i</sub> to v<sub>i</sub> + η ∂h/∂X<sub>i</sub>.
  Gradient descent: go downhill; v<sub>i</sub> becomes v<sub>i</sub> η ∂h/∂X<sub>i</sub>.

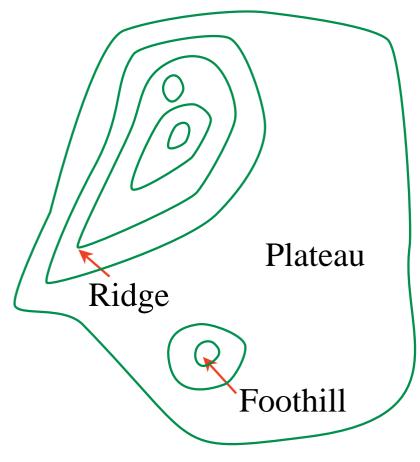
# **Problems with Hill Climbing**

Foothills local maxima that are not global maxima

**Plateaus** heuristic values are uninformative

**Ridge** foothill where *n*-step lookahead might help

Ignorance of the peak



# **Randomized Algorithms**

- Consider two methods to find a maximum value:
  - Hill climbing, starting from some position, keep moving uphill & report maximum value found
  - Pick values at random & report maximum value found
- Which do you expect to work better to find a maximum?
- > Can a mix work better?

# **Randomized Hill Climbing**

As well as uphill steps we can allow for:

**Random steps:** move to a random neighbor.

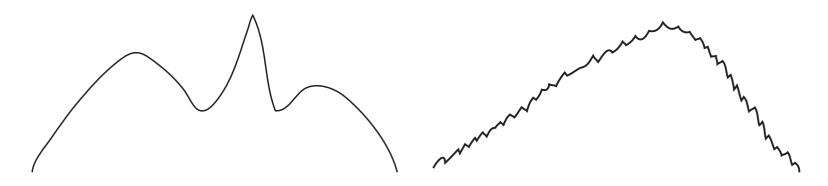
**Random restart:** reassign random values to all variables.

Which is more expensive computationally?



# **1-Dimensional Ordered Examples**

Two 1-dimensional search spaces; step right or left:



Which method would most easily find the maximum?

> What happens in hundreds or thousands of dimensions?

What if different parts of the search space have different structure?

### Stochastic Local Search for CSPs

- Goal is to find an assignment with zero unsatisfied relations.
- > Heuristic function: the number of unsatisfied relations.
- > We want an assignment with minimum heuristic value.
- Stochastic local search is a mix of:
  - $\succ$  Greedy descent: move to a lowest neighbor
  - > Random walk: taking some random steps
  - > Random restart: reassigning values to all variables



- It may be too expensive to find the variable-value pair that minimizes the heuristic function at every step.
- > An alternative is:
  - Select a variable that participates in the most number of conflicts.
  - Choose a (different) value for that variable that resolves the most conflicts.
- The alternative is easier to compute even if it doesn't always maximally reduce the number of conflicts.



You can add randomness:

When choosing the best variable-value pair, randomly sometimes choose a random variable-value pair.

> When selecting a variable then a value:

- > Sometimes choose a random variable.
- Sometimes choose, at random, a variable that participates in a conflict (a red node).
- $\succ$  Sometimes choose a random variable.
- Sometimes choose the best value and sometimes choose a random value.

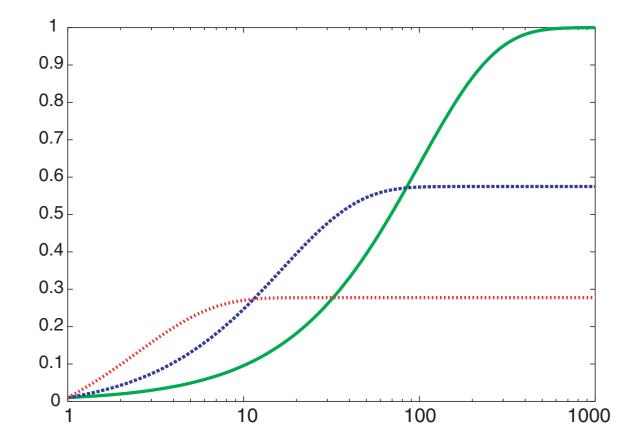
# **Comparing Stochastic Algorithms**

How can you compare three algorithms when

- one solves the problem 30% of the time very quickly but doesn't halt for the other 70% of the cases
- one solves 60% of the cases reasonably quickly but doesn't solve the rest
- one solves the problem in 100% of the cases, but slowly?
- Summary statistics, such as mean run time, median run time, and mode run time don't make much sense.

**Runtime Distribution** 

Plots runtime (or number of steps) and the proportion (or number) of the runs that are solved within that runtime.



### Variant: Simulated Annealing

- > Pick a variable at random and a new value at random.
- ▶ If it is an improvement, adopt it.
- ➤ If it isn't an improvement, adopt it probabilistically depending on a temperature parameter, *T*.
  - > With current node *n* and proposed node *n'* we move to *n'* with probability  $e^{(h(n')-h(n))/T}$
- > Temperature can be reduced.



- To prevent cycling we can maintain a tabu list of the k last nodes visited.
- > Don't allow a node that is already on the tabu list.

### If k = 1, we don't allow a node to the same value.

- We can implement it more efficiently than as a list of complete nodes.
- > It can be expensive if k is large.

### **Parallel Search**

- $\blacktriangleright$  Idea: maintain k nodes instead of one.
- > At every stage, update each node.
- > Whenever one node is a solution, it can be reported.
- Like *k* restarts, but uses *k* times the minimum number of steps.





- Like parallel search, with k nodes, but you choose the k best out of all of the neighbors.
- > When k = 1, it is hill climbing.
- When  $k = \infty$ , it is breadth-first search.
- $\blacktriangleright$  The value of k lets us limit space and parallelism.
- Randomness can also be added.

### **Stochastic Beam Search**

- Like beam search, but you probabilistically choose the k nodes at the next generation.
- The probability that a neighbor is chosen is proportional to the heuristic value.
- > This maintains diversity amongst the nodes.
- > The heuristic value reflects the fitness of the node.
- Like asexual reproduction: each node gives its mutations and the fittest ones survive.

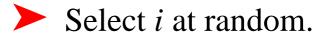
# **Genetic Algorithms**

- Like stochastic beam search, but pairs are nodes are combined to create the offspring:
- > For each generation:
  - Randomly choose pairs of nodes where the fittest individuals are more likely to be chosen.
  - For each pair, perform a cross-over: form two offspring each taking different parts of their parents:
  - > Mutate some values
  - Report best node found.



#### Given two nodes:

$$X_1 = a_1, X_2 = a_2, \dots, X_m = a_m$$
  
 $X_1 = b_1, X_2 = b_2, \dots, X_m = b_m$ 



> Form two offspring:

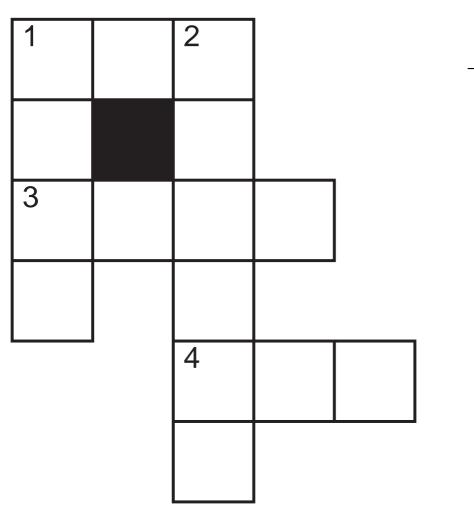
$$X_1 = a_1, \ldots, X_i = a_i, X_{i+1} = b_{i+1}, \ldots, X_m = b_m$$

$$X_1 = b_1, \ldots, X_i = b_i, X_{i+1} = a_{i+1}, \ldots, X_m = a_m$$

Note that this depends on an ordering of the variables.

> Many variations are possible.

### Example: Crossword Puzzle



#### Words:

ant, big, bus, car, has book, buys, hold, lane, year beast, ginger, search, symbol, syntax