Searching for a solution

The process of searching for a solution may be represented in terms of the following
concepts, and visualized on a search graph:

e start node corresponds to the
initial state of the agent

start
node
e other nodes correspond to the —
subsequent states through which
the agent traverses the space \

e graph edges correspond to the
state transitions or actions of the explored nodes
agent; they may have costs '
assigned

e part of the space is explored and
known to the agent, while the rest
is yet undiscovered

Searching is a component of all methods of artificial intelligence, and the ability of
efficient searching seems to be an inherent attribute of the intelligence proper.

Search methods

Exponential search spaces

Let's try to make some numerical characterization of the search space. For simplicity
let's assume there is a constant set of state transitions available in each state, denote
their number as b, as in branching factor.

How many states does the agent need to examine to explore the space to the depth d?
ltisbford=1, b%*ford =2, b3 ford =3, ... and generally b for the depth d.

And how deep will the agent generally need to search? That depends on how deep the
solution state is located. It may be close to the starting state, which means the
problem is easy, or it may be far away from the starting state, or deep in the search
space, which signifies a hard to solve problem.

Assuming the agent will need to search a significant part of the size of the space for
each specific problem, we can say that the amount of search grows exponentially with
respect to the difficulty of a problem, so the search process will have complexity O(b?).

This is bad news. For exponential problems, assuming b = 10, solving an easy problem,
like d = 5, will require exploring 10° states, which might take as little as 1 second.

A more difficult problem with d = 10 will involve 10" states and 10° seconds, or just
over one day of computing time, but a problem with d = 15 will require 317 years of
compute time. Even with massively parallel processors this will likely be unacceptable.

Search methods 2

Backtracking search (BT)

FUNCTION BT(st)

BEGIN
IF Term(st) THEN RETURN(NIL) ;
IF DeadEnd(st) THEN RETURN(FAIL) ;
ops := ApplOps(st) ;
L: IF null(ops) THEN RETURN(FAIL) ;

ol := first(ops)
ops := rest(ops)
st2 := Apply(ol,st)
path := BT(st2)
IF path == FAIL THEN GOTO L
RETURN (push (o1, path))
END

trivial solution

no solution
applicable operators
no solution

The BT algorithm efficiently searches the solution space

without explicitly building the search tree. The data structures
it utilizes to hold the search process state are hidden (on the
execution stack). It is possible to convert this algorithm to an
iterative version, which builds these structures explicitly.

The iterative version is more efficient computationally, but lacks
the clarity of the above recursive statement of the algorithm.

Search methods — backtracking search

Backtracking search — properties

BT has minimal memory requirements. During the search it only keeps a single
solution path, and discards all information for the explored and abandoned parts of the
search space. Its space complexity is O(d), where d — the distance from the initial
state to the solution (measured in the number of the operator steps). The space
complexity is the same for the best case, average case, and worst case.

The time complexity is much worse, but critically depends on how lucky the search is.
In the worst case scenario the BT algorithm may visit all the states in the space before
finding the solution. And even the average case has exponential O(b?) time complexity.

But perhaps the most important problem with the BT algorithm is that it might not
find a solution, even if one exists. If the state space is infinite, the algorithm may
execute an action leading to an infinite subspace which contains no solution. In this
case, the algorithm will never backtrack from the wrong operator choice, and keep
searching forever.

Even with finite spaces, the algorithm may fail to find a solution. If the algorithm gets
into a loop, it may get trapped in it and never be able to break out. This depends on
how the algorithm processes the successor states that it reaches by its actions.

Search methods — backtracking search 4

Checking for repeated states

One of the problems with BT — as well as with all search algorithms — is the potential
for looping. If the algorithm ever reaches a state, which it has already visited on its
path from the initial state, and just continues the state space exploration, then it will
repeatedly generate the same sequence of states and may never break out of this loop.

In principle, it is quite easy to avoid this problem. The simplest way is to check, after
reaching any state, whether that state is not present on the current path from the start
state. And if it is, then prevent the exploration of this just arrived at, revisited state.

However, such checking incurs a significant computational overhead. Each state
exploration step, instead of being constant time and possibly quite fast, would require
d steps of checking, at depth d. It is therefore a compromise choice, whether to
significantly extend the running time, and avoid the loops, or skip this checking to save
time, but risk looping.

In fact, it is possible to do a more extensive repetition check. The state the algorithm
arrives at may not be on the current path, but may have been previously discovered,
and explored, on another search branch, already backtracked from. For such test a set
of all visited stated must be kept, a so-called Closed list. In the recursive version of the
BT algorithm this list would need to be global for all the invocations of the procedure.

Search methods — backtracking search 5

Search depth limiting with iterative deepening

A serious problem for the BT algorithm are infinite, or extremely large spaces, which it
generally cannot handle. If the algorithm makes a wrong turn, and starts exploring an
infinite, or a very large, subtree which contains no solution, it may never backtrack and
will not find the solution. Particularly costly, or fatal, are bad choices made at the very
beginning of the search.

This is a problem with all “optimistic”, or depth-first, algorithms, such as BT, which
prefer to pursue any path as long as possible, rather than worry about alternatives.

A general and effective solution to this problem is to set a search depth limit. It
protects from the consequences of taking a wrong turn in a large space, but also of
getting trapped in a loop. The depth limit needs to be set to some “reasonable” value.

It is, however, generally not easy to determine such “reasonable” value. Setting it
unreasonably high reduces the benefits of having a limit, while setting it too low
prevents the algorithm from finding a solution when one exists.

Therefore search depth limiting needs to be augmented with iterative deepening.
With this modification BT is complete — as long as a solution path to the goal state
exists, the algorithm will find it. However, iterative deepening is very inefficient with
BT. If the depth limit is set too low, BT searches the space to that limit, but when it
backtracks, it deletes all search results. So after each deepening step the whole search
process essentially starts from scratch.

Search methods — backtracking search 6

Heuristics and static evaluation functions

The algorithms presented so far are simple and do not generally require an informed
strategy to work. Having and using such strategy is however always desirable.

A heuristic we will call some body of knowledge about the problem domain which:

e cannot be obtained from a syntactic analysis of the problem description,

e may not be formally derived or justified, and which may even be false in some cases,
and may lead to wrong hints for searching,

e but which in general helps make good moves in exploring the search space.

Having a heuristic should permit one to build informed search strategies. A general and
often used scheme for constructing strategies using heuristic information is a static
evaluation function. This function, defined on all states, expresses either:

e the perceived “goodness” of a state, or a chance that the solution can be reached
via this state efficiently, or:
e the estimated distance from this state to the solution.

These two metaphors for formalizing heuristics actually have opposite meanings: in the
first case, a higher value is better, while the opposite is true in the second. The latter
will be mostly assumed here.

Search methods — heuristic state evaluation functions 7

Hill climbing approaches

An evaluation function can be applied directly in searching. This leads to a class of
methods called hill climbing. Hill climbing methods generally belong to the class of
greedy algorithms.

Direct application of these methods is limited to domains with a very regular
evaluation function, eg. strictly monotonic one. Applying hill climbing in practical cases
typically leads to the following problems:

objective function

{ lobal maximum

1. local maxima of the evaluation

function shoulder
2. “plateau” areas of the evaluation local maximum
f] flat" local maximum
unction
3. oblique “ridges” of the evaluation
'Fu nction SurTent state space

state

-~
~ rd
/ \ ’/
I -~
-

y

Search methods — hill climbing approaches 8

Graph searching

Recall the the iterative deepening version of the backtracking (BT) algorithm, and the
problem of repeated explorations of the initial part of the search space. In order to
avoid such repeated exploration one might introduce an explicit representation of the
search graph, and keep in memory the explored part of the search space. Algorithms
which do this are called graph searching algorithms.

General graph searching
strategies (blind): node

e breadth-first search
strategy (BFS),

e depth-first search

N
strategy (DFS), \.

_ ‘ unexplored nodes
e other strategies. 9
§

\
\
\
\
explored nodes]
|
|

Search methods — graph searching

Graph searching algorithms

The graph searching algorithms perform a simulated exploration of the state space by
generating new yet-unknown states as successors of the states already known. This is
the process of repeatedly expanding a selected state by trying all possible state
transition operators on it. The strategy determines which state is selected for

expansion first.

FUNCTION TreeSearch(Problem,Strategy)
BEGIN
initialize the search tree using the initial state of Problem
LOOP
IF there are no candidate nodes on Open
THEN RETURN failure
choose a node from Open according to Strategy
IF the node corresponds to a goal state
THEN RETURN the respective solution
expand the node and add the child nodes to the tree
transfer the node from Open to Closed

END

Search methods — graph searching 10

Uniform-cost search (UC)

In those cases, when the costs of all moves are not equal, the breadth-first search,
which is based on the number of moves, obviously no longer guarantees optimality.

A simple extension of the breadth-first algorithm finds the optimal path for any
(positive) cost of a single move. This algorithm is called the uniform-cost (UC)
search, and works by always selecting for expansion the graph node of the lowest path

cost.
. .
5 5 <5 5) <5 5><¥ 5) (/\J?
3 3 3 3 3 3 3 3
M3 3N3E s s 3 G S 3 6 NSNS 6 s 3 G

In the case of equal costs, this is identical to breadth-first search.

The optimality of the algorithm can be (trivially) proved as long as the cost of a single
move is some positive value (> €). But since the algorithm is guided by the path cost,
its complexity cannot be characterized as a function of b and d. Instead, if C* denotes
the cost of the optimal solution, the worst case complexity of the algorithm — both

time and memory — is O(b'T1C7/€l).

In the case of equal costs, this is O(b?%).

Search methods — graph searching 11

Search termination

The goal of searching might be just to find some path to the goal, or to find the
optimal path. In the former case, the algorithm may terminate when it discovers, that
the state it has just reached, ie. that has been placed on the Open list, is the goal
state. But can we do the same when searching for an optimal solution?

— . j .
:3:3; :3:3; 3 3; 3 3 3 3
S 3 G S 3 6 NSNS s 3 G s 3 G

The optimal search should be terminated when the algorithm has just chosen a goal
node (possibly one of a few already reached goal nodes) for expansion. The expansion
can then be abandoned, and the algorithm terminated, but the best known path to the
goal node is the optimal solution. Since the algorithm systematically finds all cheapest
paths, a decision to expand a node means, that there may not exist any cheaper paths
to It.

Before that happens, however, the algorithm explores cheaper paths, and there is no
guarantee that it would not find a new, better path to the goal node.

Search methods — graph searching 12

Adding heuristics: the best-first search

The most straightforward application of a heuristic state evaluation function to graph
searching leads to the best-first search. At any point, it chooses to expand states
with the best heuristic value. With a good evaluation function, such which correctly
evaluates states, and decreases in value along the path to the solution, the best-first
search algorithm proceeds directly toward the goal state, wasting no time exploring any
unnecessary states (graph nodes).

Also with slight defects in the evaluation function, with a few values a little off, but no
systematic errors, this scheme works very well in guiding the search space exploration
process.

The problems start when the evaluation function is wrong in a larger (perhaps infinite)
part of the search space, and consequently indicates as good some states which do not
lead to a solution. In such cases the best-first strategy exhibits the same problems as
the depth-first search, even if the evaluation function may correctly evaluate many, or
most, states.

Search methods — graph searching 13

Search methods — graph searching

14

A modified node selection — the already incurred cost

Consider the following deterministic state (node) evaluation functions:

h*(n) — the cost of the cost-optimal path from n to the goal
g*(n) — the cost of the cost-optimal path from sy to n

Therefore:

f*(n) == g*(n) + h*(n)
f*(n) — the cost of the cost-optimal path from s to the goal, going through n

Having access to the f*(n) function would allow one to always select the nodes on the
optimal path from start to the goal. In fact, it would suffice to use the h*(n) function.
In both cases, the agent would go directly to the goal.

Unfortunately, these functions are normally not available. We are forced to use their
approximations to select nodes in the graph. However, when using the approximations,
then the search based on the f*(n) function does not necessarily proceed exactly like
that based on the A*(n) function.

Search methods — graph searching — the A* algorithm 15

A modified node selection — the A* algorithm
Consider the following heuristic (approximate) state evaluation functions:

h(n) — a heuristic approximation of h*(n)
g(n) — the cost of the best known path from sg to n; note g(n) > g*(n)

f(n):=g(n)+ h(n)

How does the strategy using the f(n) approximation work? If h(n) estimates the
h*(n) value very well, then the algorithm works perfectly, going directly to the goal. If,
however, the h(n) function is inaccurate, and eg. reports some states to be better then
they really are, then the algorithm will first head in their direction, lured by the low
values of h(n), while g(n) was negligible.

After some time, however, such erroneously estimated paths will stop being attractive,
due to the increasing g(n) component, and the algorithm will switch its attention to
more attractive nodes. The attraction of a node here is not affected by how far it is
from start or from the goal. Instead it is determined only by the combined estimate of
the total cost of a complete start-to-goal path running through that node.

An algorithm using a strategy with the above f(n) function is called the A*
algorithm.

Search methods — graph searching — the A* algorithm 16

The evaluation function in the A* algorithm

The h(n) and g(n) components of the f(n) function represent the two opposite
trends: the optimism (Ah(n)) and the conservatism (g(n)). We can freely adjust the
strategy one way or the other by using the formula:

f(n):= (1 —k)*g(n)+kx*hn)

By increasing the weight coefficient k& we can bias the search toward more aggressive
(and risky) when, eg. we trust the h(n) function and want to proceed rapidly. On the
other hand, by decreasing this coefficient, we enforce a more careful exploration of the
search space, moving ahead slower, but possibly compensating for some of the h(n)
function’s errors.

Note that in the extreme cases, k£ = 1 yields the best-first search, while &k = 0 yields
the uniform-cost search.

But it is the quality of the h(n) function that has the biggest influence on the search
process.

Search methods — graph searching — the A* algorithm 17

The h(n) function properties in A*

The heuristic evaluation function h(n) in the A* algorithm is called admissible if it

bounds from below the real cost function h*(n), ie. Vn h(n) < h*(n). Admissibility

means chronic underestimating of future costs, so it is also referred to as optimism. It
can be proved, that whenever there exists a path from the start node to the goal, the
A* with an admissible heuristic will always find the best such path.

This sound nice, so is it hard to find such an admissible heuristic? Not necessarily. For
example, h(n) = 0 indeed bounds h*(n) from below for any problem. And can such
a trivial heuristic be useful? The answer is: not really. Such algorithm always selects
the nodes with the shortest path from s, so it is equivalent to the breadth-first (more
generally: uniform-cost) search which indeed always guarantees to find the optimal
solution, but, as we already know, it is not such a great algorithm.

Naturally, the better h(n) approximates h*(n) the more efficient the search is. In fact,
it can be proved that for any two evaluation functions h1(n) and ho(n), such that for
all states hy(n) < ha(n) < h*(n) using hy in search leads to the exploration at least
the same number of states as it does using ho.

Search methods — graph searching — the A* algorithm 18

The h(n) function properties in A* (cntd.)

Admissibility of the heuristic function h(n) is an interesting property, which can
frequently be proved for functions coarsely approximating h*(n), but not always can
be proved for painstakingly elaborated function, such as using numerical learning from
a series of examples (which is one method of constructing heuristic functions, which we
will look at later).

An even stronger property of a heuristic evaluation function h(n) is its consistency,
also called the monotone restriction, or simply the triangle property:

%

h(ni) = h(ng) < c(ni; ny)

It can be proved that for a function h satisfying the monotone restriction the A*
algorithm always already knows the best path to any state (graph node) that is
chooses for expansion. In practice this makes it possible to simplify the search
algorithm implementation, if we know that the evaluation function is consistent.

Search methods — graph searching — the A* algorithm 19

A* algorithm complexity

For most practical problems the number of nodes of the state space grows
exponentially with the length of the solution path. Certainly, an efficient heuristic could
decrease the computational complexity of the algorithm.

A good question is: when could we count on such a reduction?

It can be proved, that for this to happen, ie. for the A* algorithm to run in polynomial
time, the estimate error of the heuristic evaluation function should not exceed the

logarithm of the actual solution length:

h(n) = h*(n)| < O(log h™(n))

In most practical cases one cannot count on finding such good heuristics, so the A*
algorithm should be considered to be exponential. However, most often this bad time
performance is not even the biggest problem with A*. Just as with most other graph
searching algorithms, it stores all the discovered states in memory, and usually fills up
the available computer memory a long time before running out of its time limit.

Search methods — graph searching — the A* algorithm 20

Memory-considerate variants of A*

There are variants of the A* algorithm which cope with the memory problem.

The IDA* (Iterative-Deepening A*) algorithm sets a limit on the f value to which the
algorithm is allowed to proceed. After that the limit is extended, but the explored
nodes are deleted from memory.

The RBFS (Recursive Best-First Search) algorithm is more like the recursive version of
the BT algorithm. It explores the search graph recursively, always keeping in mind the
estimated cost of the second-best option (at all levels of recursion). When the
currently explored path estimate exceeds the memorized alternative, the algorithm
backtracks. And when it does backtrack, it loses all memory of all the explored part of
the space (but keeps the estimate of that path in case it is later necessary to also
backtrack from the original alternative).

The SMA* (Simplified Memory-Bounded A*) proceeds just like A*, but only up to the
limit of the currently available memory. After that, the algorithm continues, but
deleting the least-promising node to make space for each newly encountered state.
However, it stores in the parent of each deleted node its heuristic estimate, so in case
all preserved nodes get their estimates higher, the algorithm may come back, and
re-generate the deleted node.

Search methods — graph searching — the A* algorithm 21

Algorithm A* in practice

A good question is whether the heuristic search algorithms, such as A*, have
important practical applications.

The answer is: yes, in some constrained domains, such as planning the optimal travel
path of autonomous vehicles, or finding the shortest paths in computer games.

The A* algorithm is the heuristic version of Dijkstra's algorithm (1959) finding the
shortest paths from a selected node to all the other graph nodes.

The Dijkstra’s algorithm is also used in many technical applications, such as network
routing protocols like OSPF, or finding the routes in the GPS navigation systems. In
the latter domain, due to the graph size the Dijkstra’s algorithm must be augmented
by additional techniques. These can be heuristics, or introducing abstraction and path
hierarchy. However, due to the commercial nature of this still developing application,
the detailed solutions are rarely published.

Search methods — graph searching — the A* algorithm 22

Short review

1. What is the difference between A* and best-first search algorithms?
How does this difference affect the search process?

2. What are admissible heuristics for the A* algorithm?
What is their practical significance?

3. The heuristic search algorithm A* with an admissible evaluation function h
guarantees finding an optimal solution, whenever one exists. Consider the following
modifications of the f function, and answer whether they preserve the this
optimality property of the A* algorithm. Justify your answer.

(a) introduction of an upper bound on the value of the h(n) function
(b) introduction of a lower bound on the value of the g(n) function

Search methods — graph searching — the A* algorithm 23

Search methods — graph searching — the A* algorithm

24

Constructing useful heuristics

How in general can one go about constructing a useful heuristic function, without
a sufficient knowledge of the problem domain to design it from first principles?

Experiment, experiment, experiment!

Search methods — constructing heuristic functions

25

An example: the 8-puzzle

9110 11 12|

The 15-puzzle is popular with school children.

8-puzzle — a reduced version, suitable for testing various artificial intelligence
algorithms and strategies, and presenting their operation.

sS4l | [1]2(3
BlT[8] —>» 8] |4
7i3[2] [ZI6]S

Search methods — constructing heuristic functions 26

Heuristics for the 8-puzzle

Heuristic 1: count elements in wrong places, the function hi(n) = W(n)

Heuristic 2: for all the elements in a wrong place, compute and add up their distances
from their proper place. The number thus derived will certainly be less than the
number of moves of any complete solution (so is a lower bound of the solution). Call it

the function ho(n) = P(n)

Heuristic 3: hg(n) = P(n) 4+ 3 * S(n)

where the function S(n) is computed for the elements on the perimeter of the puzzle
taking O for those elements which have their correct right neighbor (clockwise), and
taking 2 for each element which have some other element as their right neighbor. The
element in the middle scores 1, if it is present.

In general, neither S(n) nor hs(n) are lower bounds of the solution length. However,
the h3(n) function is one of the best well-known evaluation functions for the 8-puzzle,
resulting in a very focused and efficient search strategy.

On the other hand, the h(n) = 0 function is a perfect lower bound solution
estimation, satisfying the requirements of the A* algorithm, and always finding the
optimal solution. This illustrates the fact, that technically correct is not necessarily
heuristically efficient.

Search methods — constructing heuristic functions 27

The heuristic function quality vs. the cost of A* search

The table shows a comparison of the search costs and effective branching factors for
the Iterative-Deepening-Search and A* algorithms with hq, ho. Data are averaged over
100 instances of the 8-puzzle for each of various solution lengths d.

Search Cost (nodes generated) Effective Branching Factor

4| DS AF(h) | A*(ho) DS AF () A (7o)
2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
3 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 || 3644035 227 73 2.78 1.42 1.24
14 — 539 113 - 1.44 1.23
16 — 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 — 7276 676 - 1.47 1.27
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26

(Table copied from the Russell&Norvig textbook.)

An approximate number of IDS nodes for d=24 is 54,000,000,000.

Search methods — constructing heuristic functions 28

Heuristic search of the 8-puzzle search tree
The presented comparison of the heuristic functions for 8-puzzle does not contain the

o
@ -y ra

ol
Minlm
1
"

[

29

—
o O A
Hra=r.

= 0 o
RN]
L

— g™ e i

. an of L oo,

. reawr-
—_
& &\ 0).
Mirawr.

. —rm
T

L

11

—
1 =+ Un
rar- s
- g
U
e m -)
- e m
@ -

m k-

best h3 function. Some illustration for its performance is the following example search
tree, where the solution is at level 18, and the total number of nodes is 44. Its effective

branching factor is 1.09

constructing heuristic functions

Search methods

Constructing heuristics: the relaxed problem approach

One of the general approaches to constructing heuristic functions is the following.
Consider a simplified problem, by giving up on some requirement(s), to make finding
a solution easy. For each state generated during the search for the original problem,
a simplified problem is solved (eg. using a breadth-first search). The cost of the
optimal solution for the simplified problem can be taken as an estimation (lower
bound) of the solution cost for the original problem.

For example, if the state space is defined with n parameters, so the states are
the elements of the n-dimensional space, then one of the parameters can be
eliminated, effectively mapping the states to (n — 1) dimensions.

If there are a few different ways, that this simplification can be achieved, and we
cannot choose between them (eg. which state variable to drop), then we can use their
combination for the evaluation function: h(n) = maxg(hi(n), ..., hi(n))

Let us note, that in the case of the 8-puzzle heuristics, if one allowed a teleportation of
the elements to their proper place in one move, it would be an example of such
approach, and give the evaluation function hi(n). Further, the agreement to move
elements by single field, but regardless of other elements possibly in the way, would
give the function ho(n).

Search methods — constructing heuristic functions 30

Constructing heuristic functions (cntd.)

Another approach to developing a heuristic function is to work it out statistically.

We need first to define some state attributes, which might be related to the distance
to the solution. Having these, we take a heuristic function to be a linear combination
of such attributes, with some unknown coefficients, which can be learned. This is done
by running some experiments to determine some solution distances, using a full search,
or another heuristic function.

The derived optimal solution distances can be used to construct a set of linear
equations, which can be solved for the unknown coefficients.

Note that this is the way the h3(n) function for the 8-puzzle could possibly be found.
The W (n) and P(n) functions could be assumed useful for constructing a good
heuristic. The S(n) function also estimates the difficulty of reaching the goal state.
Using the function h(n) = ax W(n) 4+ b P(n) + ¢ .S(n) and running many
experiments to compute h(n), possibly we could have determined the approximate
optimal values as: a ~ 0, b ~ 1 and ¢ = 3, in effect obtaining the function h3(n).

Search methods — constructing heuristic functions 31

Short review

1. Name and briefly describe the methods you know for creating heuristic evaluation
functions.

Search methods — constructing heuristic functions

32

Searching in two-person games

Games are fascinating and often intellectually challenging entertainment. No wonder
they have been the object of interest of artificial intelligence.

State space search methods cannot be directly applied to games because the
opponent’'s moves, which are not known, must be considered. The “solution” must be
a scheme considering all possible reactions of the opponent.

Additionally, in some games the full state information is not available to either player.

Types of games:

deterministic chance
perfect chess, checkers, | backgammon,
information | go, othello monopoly
imperfect battleships, bridge, poker,
information | blind tictactoe | scrabble

Search methods — search algorithms for games

33

Two-person game tree

MAX (X)
X X X
MIN (O) X X X
X X X
X| 0 X (o) X
MAX (X) fo)
X0 X X|0 X|0
MIN (O) X X
X|0|X X|0|X X|0|X
TERMINAL olX 0|0|X X
(o) X| X|O X| 0[O
Utility -1 0 +1

Search methods — search algorithms for games 34

The minimax procedure

A complete strategy for a deterministic perfect information game can be computed
using the following minimax procedure. It computes the value of the starting node by
propagating the final utility values up the game tree:

1. the levels of the tree correspond to the players’ moves: MAX's and MIN's; assume
the first move is MAX's,

2. assign the MAX's win value to the terminal states in the leaves (negative, if they
actually represent a loss to MAX)

3. tree nodes are successfully assigned the values: the maximum of the branches below
if the current node corresponds to MAX, and the minimum of the branches below if
the node corresponds to MIN,

4. the top tree branch with the highest value indicates the best move for MAX.

MAX

MIN

Search methods — search algorithms for games 35

Resource limiting — using heuristics

The minimax procedure defines an optimal strategy for the player, assuming the
opponent plays optimally. But only, if it can be fully computed.

For a real game tree this might be a problem. Eg., for chess b ~ 35, m ~ 100
for a reasonable game, and a complete game tree might have about

35199 ~ 101°° nodes. (The number of atoms in the known part of the Universe
is estimated at 10%°.)

To solve this problem, a heuristic function estimating a position value can be used, like
in standard state space search, to determine the next move without having an explicit
representation of the full search space. In the case of a two-person game this facilitates
applying the minimax procedure to a partial game tree, limited to a few moves.

For chess, such heuristic function can compute the material value of the
figures on the board, eg. 1 for a pawn, 3 for a rook or a bishop, 5 for a knight,
and 9 for the queen. Additionally, position value can be considered, such as
,favorable pawn arrangement”, or a higher value of the rook in the end-game
(higher yet for two rooks).

Search methods — search algorithms for games 36

Special situations in heuristic-based search

Limiting the depth search sometimes leads to specific issues, which require special
treatment.

One of them is the concept of quiescence search. In some cases the heuristic
evaluation function of some states may be favorable for one of the players, but the
next few moves — which extend beyond the minimax search limit — inevitably lead to
serious shifts, like exchanging some pieces in chess. It would be useful to detect such
situations, and extend the search in the corresponding part of the game tree to reach
a more stable configuration, or so-called quiescent states.

Another issue is the horizon effect. It occurs when an inevitable loss for one of the
players approaches, but she can postpone its onset by making insignificant moves.

Search methods — search algorithms for games 37

Search methods — search algorithms for games

38

Minimax search — cutting off the search

What practical effects can be obtained with the heuristic search limited to a few steps?

Eg., for chess, assuming 10* nodes per second and 100 seconds for a move, 10° ~ 35%
positions can be explored, which amounts to 4 moves. Unfortunately, for chess this
corresponds to only the most elementary play. Additional techniques for increasing the
search efficiency are needed.

It turns out it is easy to make additional savings in the minimax. The most common
approach is called the alpha-beta pruning.

Search methods — search algorithms for games 39

a—[(pruning — an example

2 4[16]
2 531
=539

Maximizing level

A\
I

h

_ O
o) F o 1 5 2 4 1 1 3 2 3 9 2 b) s 1 3 9 ¥ 2 18
(1] 21 0] [T {91 1l (13 [17) (1% [21) [24] [26] | 28] [32] [34] 36/

Exercise: find an error in the above tree (source: Patrick Henry Winston, Artificial
Intelligence, 3rd ed.).

0T | do1s uamsuy

Search methods — search algorithms for games 40

a—(pruning — the optimal case

The optimal case of the minimax search with the alpha-beta cuts is when at each tree
level the nodes are examined starting from the most favorite, for the given player. In
such case only one “series” of nodes are evaluated in each subtree, and a cut occurs on

each return up the tree.

In the above diagram the savings is 16 nodes. Out of 27 nodes at the lowest level of

the tree only 11 must be evaluated.
Source: Patrick Henry Winston, Artificial Intelligence, 3rd ed. (note an error: the nodes

18, 19, 21, and 22 could also be cut off).

Search methods — search algorithms for games 41

The properties of the a—3 algorithm

The basic idea of the a—(algorithm is that the cuts it makes do not affect the optimal
move of the player.

Introducing a favorable ordering allows better cut-off efficiency. In the limit, the
optimal cuts achieve O(b™/?) algorithm complexity. In practice this doubles the
effective search depth.

The results of the min-max/a—/3 analysis does not depend on the specific values of the
evaluation function, only on their ordering. This means that an arbitrary monotonic
transformation of the evaluation function works as well and gives the exact same

results.
MAX
MIN K 1K 20
4 4 1 0 20 400

Search methods — search algorithms for games 42

Minimax — a multi-player generalization

The minimax algorithm can be generalized to a multiplayer case. In this case, a vector
evaluation function must be employed, which evaluates the position from the point of
view of each player. Each player maximizes her element of the vector, and the value
propagation proceeds like in two-player case.

to move
A (1,2,6)
B (1,2,6 (-1, 5, 2)
C (1,2,6 (6,1,2) (-1, 5, 2) (5, 4,5)
A

(1,2,6) (4,2,3) (6,1,2) (7,4,-1) (5-1-1) (-1,5,2) (7,7-1) (5,4,5)

There are other factors that have to be considered in multi-player games, such as
alliances. Sometimes it is advantageous for players to make alliances against other
players, or even change these alliances dynamically during the game.

Search methods — search algorithms for games 43

The practice of two-person computer games

Checkers: the Chinook program terminated in 1994 the 40-year long domination of the
world champion Marion Tinsley! A year later the program defeated the subsequent
champion Don Lafferty.

Chess: during the decade of 1990-2000 the chess programs rose to the level of the best
human players. In 1997 Deep Blue first defeated the world master Garri Kasparov in an
open tournament. Subsequently, chess programs running on normal computers entered.
In 2006 Deep Fritz defeated the world master Vladimir Kramnik. After this, the
excitement of the man-machine chess competition started to drop.

Othello: the human masters refuse to play the computers, which are superior.

Go: the human masters refuse to play the computers, which are too weak. Typical
games include a handicap made by humans to the computers. The branching factor in
go b > 300 so instead of a systematic search of the game tree most programs use

a rule knowledge base to generate moves.

Lastest news: in March 2016 AlphaGo defeated a 9-dan master in an even game on a
full-size board.

1Although the champion withdrew from the competition for health reasons and died shortly thereafter.

Search methods — search algorithms for games 44

Games with chance elements — expectimax

With chance elements, the set of available actions at each step is dependent on some
random variable, such as throwing the dice. The analysis is more complicated and
requires considering all the options, and computing the expected values of the
distributions of the random variables.

P

, _ 0 C
Night mode

For example: one-person games with chance elements. Every other move is the player's
choice, who maximizes her position evaluation, and the other moves are chance (or
treated as chance), with a known probability distribution of the results. The algorithm
modified to analyze such games is called expectimax.

Search methods — expectimax 45

A further generalization — expectiminimax

A complete probabilistic generalization of the minimax algorithm considers alternating
moves of the players and random draws. The algorithm for the analysis of such game
search tree is called the expectiminimax.

Search methods — expectimax 46

The heuristic evaluation in expectiminimax

Let us note a different property of an evaluation function. For minimax, the move
choice is the same for all functions with the same order of the graph nodes. This
property does not hold for expectiminimax, as seen in the figure below. The moves
designated in the presented trees are different, while it would be identical if not for the

chance moves.

MAX

DICE

MIN

In the case of expectiminimax the evaluation function may not be an arbitrary function
correctly sorting the positions. In fact, it should reflect the expected win (or its linear

transformation).

Search methods — expectimax 47

Search methods — expectimax

48

Games with incomplete information

Example: various card games.

One can compute the probability distribution of all combinations of the deal.

The idea: compute the minimax value of each possible action for each possible deal,
and then select the action maximizing the expected value computed over all
possible deals.

Best bridge programs implement this by generating many deals consistent with the
knowledge gained from the bidding and play so far, and select the action which
maximize the number of those won.

Search methods — games with incomplete information 49

Short review

1. For the following two-person game search tree, write a precise sequence of the
evaluation function values computed by the minimax algorithm with alpha/beta
cuts (order left to right).

MAX

MIN

Search methods — games with incomplete information

50

Constraint satisfaction problems

The Constrained Satisfaction Problems (CSP) are a special group of state space
search problems defined as follows:

e a finite set of variables X = {x1, 2o, ..., x,}
e for each variable x;, a finite set of its possible values, called its domain

e a finite set of constraints for the combination of values of the variables, eg. if
x1 = 5, then x5 must be even, and the combination (x1 = 5,25, = 8,23 = 11) is
disallowed

A solution of a CSP problem is any combination of variable values satisfying all the
constraints.

Let us note, that the CSP problems are really a special case of a general state space
search problems if we treat the set of constraints as a goal specification, and assigning
values to variables as state transition operators. Therefore, all algorithms introduced
earlier can be applied to these problems.

Search methods — constraint satisfaction search 51

Constraint satisfaction problems (cntd.)

Examples of CSP problems are: graph or map coloring, the 8-queen problem, the SAT
problem (assigning 0 or 1 values to variables in a logical formula to satisfy the
formula), cryptoarithmetic, VLSI design, the node labeling problem (for object
recognition in images after edge detection), task queueing, planning, and many others.

Many of them are NP-hard problems.

A CSP problem may have a solution or not, or there may exist many solutions. The
goal may be to find one solution, all of the solutions, or the best solution according to
some cost function.

The constraints in a CSP problem may be assumed to be binary, ie. constraining pairs
of variables. If there are other constraints in a CSP problem, then n-ary constraints
(for n > 2) can be converted to equivalent binary constraints, and unary constraints
can be built into their respective variables’ domains and dropped.

Search methods — constraint satisfaction search 52

Local constraint satisfaction

D1={R,G,B}

Let’s consider the map coloring problem. We
have to assign colors to areas in a given map
from the sets of allowed colors, possibly
different for different areas, so that adjacent
areas have different colors.

Before we start searching the space of possible value assignments to variables, we can
conduct some local constraint satisfaction analyzes.

Let's consider the constraint graph of a CSP problem, whose nodes correspond to
the variables, and edges to the (binary) constraints of the original problem. We
consider an edge in this graph as a pair of complementary directed edges, and define
a directed edge x; — x; of the graph to be arc consistent iff Vo € D; dy € D,
such that the pair (z,y) satisfies all the constraints existing for the edge.

An inconsistent arc can be brought into consistency by removing specific values from
the domains of some variables (specifically, those € D; values for which there does
not exist a y € D, value satisfying some specific constraint).

This works to reduce and simplify the original problem.

Search methods — constraint satisfaction search 53

Arc consistency

Let's consider the following example map D1={R,G,B}
coloring problem:

D1 ={R,G, B},

D> ={R,G},

Ds = {R},

C = {331 7£ L2, T2 7£ X3, L1 7£ 5133}.

z, €{R,G,B}
»:
75 The arc (x1—x3) is arc consistent,
25 €{R} since both Vax € Dy dJy € Dy xz # gy
7, €(RG) and Yy € Dy 3z € Dy & # y hold,

The fact that arc consistency holds is a mixed blessing. It means that the constraint
satisfaction checking of a specific arc in the graph does not contribute to solving the
problem. However, a full analysis of the whole CSP constraint graph can sometimes

give quite useful results.

Search methods — constraint satisfaction search 54

An example: map coloring

We again consider the map coloring problem: Dy = {R, G, B}, Dy = {R, G},
Ds ={R}, C = {x1 # x9,22 # x3,71 # T3}

Analyzing the first constraint (x1 # x2) gives z1 €{R,G,B}
nothing because, as previously noted, this edge 7
is arc consistent. (For each value from D; 7
there is a value in Dy which satisfies the zs €{R} 2
constraint, and the other way around.) z2 €{R,G}
However, analyzing the second constraint
r1 €{RGB} (xo # x3) gives some useful results. Even
7 though for x3 = R there exists corresponding
— values for x5, for xo = R there is not a value
zs €{R} 2 for x5 satisfying that constraint. So the value
ry €{ RG}={G} R can be removed from the domain of x5.

Search methods — constraint satisfaction search

55

An example: map coloring (cntd.)

A similar analysis for the constraint (x1 # x3) permits to strike from the domain of x4

the value R:

| E{ /R,G,B}Z{G,B}

£

I3 R
A cire—ie)

Analyzing all the constraints ended with a partial reduction of the variables’” domain.

The problem has been simplified (there are fewer possible value assignments to
variables), but there still exists more than one potential solution.

But it is easy to observe that the arc consistency checking could, and should, be
continued.

Search methods — constraint satisfaction search

56

Constraint propagation

Since the arc consistency checking results in the reduction of the domains of some
variables, it makes sense to repeat the process for the constraint graph edges which
were originally consistent, or which have been made consistent. This leads to the
constraint propagation, which means repeating consistency checking as long as
values continue to be removed from variables’ domains.

The constraint propagation in the map coloring example causes the edge (z1,x2) —
originally consistent — to remove the value G from the domain D;:
z1 €{ R L B}={B}
£
£

I3 R
S cire—ie)

Finally, all the variables have singleton domains, and, furthermore, all the values satisfy
all the constraints. Thus the constraint propagation in this case helped solve the
problem and determine the unique solution.

In general, consistency checking and constraint propagation lead merely to
a simplification, and not necessarily to a complete solution, of a problem.

Search methods — constraint satisfaction search 57

Constraint propagations — the unsolved cases

D1={R,G}
It is easy to notice, that in another instance of =
the map coloring problem presented here, all 7
arcs are consistent. Nevertheless, the problem pD;—={R G} 2
has no solution. D>={R,G}

D1={B,G} In still another instance all arcs are again

7 consistent. The problem has two solutions,
7 and the constraint propagation does not help
Ds={R,G} 7 in determining them explicitly, not does it
D>={R,G} result in any reductions.
By adding to the previous problem the D1={B.,G}
constraint: (x1 # B) V (x2 # R), we obtain 7 (21 % B)
yet another instance, in which only one V(23 # R)
solution is valid, but it still cannot be D3={R,G}
determined by constraint propagation. D2={R,G}

So computing arc consistency and constraint propagation do not by themselves
puting y propag y
guarantee determining a solution of a CSP problem. It is necessary to search.

Search methods — constraint satisfaction search

Algorithms for computing arc consistency

The easiest approach to compute the arc consistency is to take each constraint, in
turn, and testing the logical conditions of the constraints. But since this may have to
be repeated due to propagation, even for a single edge, there are a lot of
computations. Some savings are possible.

It can be observed, that after a reduction of some domain D); the propagation can give
new results only by checking the edges of the form (Dy, D;), so just these needs to be
checked. What's more, with any reduction in D;. there is no need to check the edge
(D;, Dy), since the elements removed during this reduction from Dj, were not
necessary for any constraint satisfaction for any of the elements of D,. The algorithm
computing the constraint propagation this way is called AC-3 (1977).

When an arc’s consistency is checked again, the same conditions are evaluated for the
same pairs of values. Memorizing these verified value pairs (in an proper data
structure) could help refrain from recomputing them during subsequent propagations.
This is accomplished by yet another algorithm called AC-4 (1986).

Search methods — constraint satisfaction search 59

Non-binary constraints

We initially assumed to restrict the analysis to binary constraints, ie. such binding
exactly two variables. The non-binary constraints can be converted to binary ones.

One of the simplest conversion schemes is the dual encoding. It works by introducing
a new variable for each constraint of the original problem. The domain of a new
variable is the set of n-tuples of values of the original variables satisfying the original
constraint.

This way the values contained in the new variables by definition satisfy each constraint
(original) in separation. We just need to make sure the values satisfy all the
constraints. For this, the dual encoding introduced new constraints, which occur
between each pair of new variables, containing the same variables (original). The
constraints state, that the same variables (original) must have the same values.

Search methods — constraint satisfaction search 60

Non-binary constraints — example

Consider a CSP example with three variables: X = {x,y, 2}, their domains
Dy, ={1,2,3}, and two constraints: C = {z + y = z,x < y}. The dual encoding
of this problem contains two variables and two constraints:

U : (oci,|z,y,2]), Dy, ={(1,2,3),(2,1,3),(1,1,2)} ~
arg(1,U,)=arg(1,U,)

Uz <OC2> [:U, y]>> DU2 — {(17 2)7 (17 3)7 (2, 3)} /\

Ci : arg(1,Ur) = arg(1, Us) () (U)

arg(2,U,)=arg(2,U,)

Unfortunately, the consistency analysis of this problem does not yield anything,
because for each value of one variable there exist values of the other with satifying
subsequent arguments. However most values othe dual variables are n-tuples failing the

original constraints.

Generally, converting multi-variable to binary constraints sometimes leads to problems
that do not lend themselves to consistency analysis. For this reason, several algorithms
have been developed for arc consistency with multi-variable constraints. These
algorithms will not be discussed here.

Search methods — constraint satisfaction search 61

Path consistency

We define for a CSP constraint graph the notion of K-consistency. A graph is
K-consistent (for some K), if for any (K-1) variables, which among themselves have all
the constraints satisfied, for any (K-1)-tuple of values of these (K-1) variables
satisfying all the constraints for the (K-1) variables, in the domain of any selected K-th
variable a value such, that the so-obtained K-tuple of values satisfies all the constraints
for the K variables.

A constraint graph is strongly K-consistent if it is K-consistent for any J, J<K.

Note that the previously defined arc consistency is equivalent to the strong
2-consistency of a constraint graph.

The strong 3-consistency of a graph is also called a path consistency.

The significance of K-consistency is such, that if a CSP problem constraint graph with
n nodes is strongly n-consistent, then the problem can be solved without searching.
However, the algorithms for enforcing K-consistency are exponential, so it is seldom
worthwhile to do that. An exception is a weaker version of path consistency — the
restricted path consistency, for which there is an algorithm which is sometimes
computed.

Search methods — constraint satisfaction search 62

Searching in the CSP problems

Any of the previously discussed searching algorithms may be used for the CSP
problems. However, in most really hard CSP problems, where the constraints have the
nature of hard to meet, tight compromises, the most important is just the analysis of
these constraints, both syntactic and semantic.

On the other hand it is typically hard to come up with a useful heuristic, capable of
guiding the process of searching the space of value assignments to the variables.

Therefore often used is the simplest of the searching algorithms, the backtracking
search (BT). In place of a good heuristic prioritizing the best choices to be at the front
of the list, this algorithm may be augmented by a local constraint satisfaction
checking. This reduces the number of choices for the subsequent steps. In the extreme
case, when the domain of some variable got reduced to an empty set, the algorithm
would immediately backtrack to the alternative values in earlier assignments.

Search methods — constraint satisfaction search 63

Example: the 4 queen problem

Let's now consider the application of the BT (backtracking) algorithm to the 4 queen
problem. We formulate the problem to assign the row positions to the 4 queens
belonging to the different columns of the 4 X 4 chessboard. Note the BT algorithm
explores the search tree but does not store it in memory, just the current path.

S
N

X X X XX XAXXXXXAXXXXXAXXXXXXXX

The algorithm checks the constraints after placing all the queens on the board. It will
surely solve the problem, but makes many unnecessary steps, which could be
eliminated. For example, all the terminal configurations are invalid due to the
placement of the second queen. This can be seen at depth level 2 already.

Search methods — constraint satisfaction search 64

Example: the 4 queen problem (cntd.)

An obvious improvement to the algorithm is then to test the constraints on all
variables as soon as they have been assigned values. Should any constraint be found to
be violated, the value assignment most recently made would immediately be dropped,
and the algorithm would backtrack. This algorithm will be called early checking
(BT-EC). It is obviously advantageous to the BT algorithm, since the tested
constraints would have to be later checked anyway.

- z
= IE'il * |il E'i oo -I -I
>] _|!]
X X X X
|!_|!_] 5 » 2 H_!_ [= » |i 'jr!_
100 HorH 00 B0 BetH D CsrH Hisise N
X X X X X X X
= I! !|_i|ﬂ H] . [BN [!I l_iF
_|i _|i —:ﬁ _|i‘|i|]]] I'

Search methods — constraint satisfaction search 65

Example: the 4 queen problem (cntd.)

Combining the backtracking search with just the minimal form of the local constraint
satisfaction checking is called the forward checking (BT-FC) algorithm. All the
constraints for any variable assigned a value are checked, and only those. In most cases

this algorithm is advantageous to BT-EC, and certainly to BT.

5 B

Search methods — constraint satisfaction search 66

Example: the 4 queen problem (cntd.)

It is possible to apply the full arc consistency checking, with propagation. The
algorithm doing that is sometimes called the look-ahead (BT-LA) algorithm. It may
significantly reduce the size of the explored search space, as it does in the 4-queens
example here. However, the cost performing those checks is significant, and the BT-LA

may not always be advantageous to the BT-FC algorithm.

Search methods — constraint satisfaction search 67

Dependency-directed backtracking

In searching the CSP tree we may encounter a failure, causing the BT algorithm to
backtrack, whose cause was not the most recently selected assignment, but one of the
earlier steps. In such case the algorithm will continue trying various possibilities,
generating only failures, until it backtracks sufficiently, and changes the assignment of
the offending variable.

It is possible to detect such cases, when the set of variables involved in constraints
with the current variable — the conflict set — does not include the most recently
assigned variable. In these cases, the algorithm could backtrack, not just a single step,
but all the way to the most recently assigned variable from the conflict set. Such
algorithm is called backjumping (BJ).

Simple backjumping currently has only historical value, since it solves the problem,
which does not arise in practice, since the arc consistency checking starting from
BT-FC eliminate those cases completely. However, backjumping is still useful with

a slightly extended concept of the conflict set, defined as a set of those variables,
whose assigned values caused a constraint failure of the current variable, along with
the subsequently assigned variables. A version of BJ based on such definition is called
conflict-directed backjumping, and it is capable of determining the backjumping
steps where consistency checking does not help.

Search methods — constraint satisfaction search 68

Dynamic ordering

We have noted earlier, that is is difficult to obtain good heuristics indicating good
moves in searching the space of most CSP problems. There do exist, however, other
techniques augmenting this search, based on dynamic ordering, both of variables to
select those which should first receive assignments, and of values, which should be
tried first.

The most constrained variable heuristic (or MRV, for Minimum Remaining
Values), suggests to first select those variables with the smallest domains. Such choice
gives the best chance of encountering inconsistencies, and taking advantage of the
resulting reductions. This heuristic also works well within the BT-FC algorithm.

Another heuristic which may be useful in selecting a variable is the degree heuristic,
suggesting the variable occurring in the highest number of constraints with unassigned
variables.

Once a variable to assign is chosen, the least constraining value heuristic may be
used which prefers to choose those values, which exclude the least values of other
variables.

Search methods — constraint satisfaction search 69

Local search for CSP

Another approach which works well with some CSP problems is based on local search.
After more or less random choice of an initial value assignment for all variables, an
incremental repair is attempted. Greedy hill-climbing search may be used, which does
not explore the search space systematically, unlike the BT family of algorithms.

Often successful in such search for CSP problems is the min-conflict heuristic which
works by randomly selecting a variable violating some constraint, and selecting another
value for it, so that it would minimize conflicts (number of failed constraints) with
other variables.

Some CSP problems can be solved with surprising efficiency using this approach. The
key element to success is the randomness, which helps to escape the local maxima, and
other traps, and to select the right variable to repair, or to skip an unfortunate variable
choice, for which the right value would better be assigned later.

Search methods — constraint satisfaction search 70

Short review

1. Consider the CSP problem with four variables: A, B, C, D, with domains: {1,2,3}
for each, and the set of constraints given below. Draw the constraint graph for the
problem, and then try to solve it using constraint propagation (arc consistency).
Show each step of the solution (no picture). Show the graph after the termination
of constraint propagation. How many possible CSP problem solutions does it
represent? Write down one of them.

The constraint set:

C={C#D,B>D,B>C}

Search methods — constraint satisfaction search 71

Useful resources

A good elementary introduction to CSP problems by Roman Bartak
http://ktiml.mff.cuni.cz/"bartak/constraints/constrsat.html

Search methods — constraint satisfaction search

72

