
History — early models of artificial neural networks

Historically the first neuron model introduced in 1943 (McCulloch and Pitts) was able
to recognize two categories of objects based on thresholding values for the function
f(x) = ∑

i wixi. However, the weights had to be selected by the operator.

In the late 1950s, a perceptron appeared (Rosenblatt) who was able to learn the
correct weights based on samples of different categories (but only for a single-layer
input/output network).

The ADALINE neuron model was introduced almost simultaneously (Widrow and
Hoff) (Adaptive Linear Neuron). It returned the value f(x) trying to predict a real
number based on input values, and learned its weights from data.

Neural networks — history 1

ANN history: the first wave of enthusiasm

These early models ignited the first revolutionary wave of interest in artificial neural
networks. This revolution appeared in times of the early computers, and was based
mainly on promises and predictions, rather than on specific projects and applications.

A quote from the New York Times, July 8, 1958, “New Navy Device Learns By Doing”

“The Navy revealed the embryo of an electronic computer today that it expects

will be able to walk, talk, see, write, reproduce itself and be conscious of its

existence ... Dr. Frank Rosenblatt, a research psychologist at the Cornell

Aeronautical Laboratory, Buffalo, said Perceptrons might be fired to the planets

as mechanical space explorers”

Neural networks — history 2

ANN history: first disappointment

As might be expected, this enthusiasm quickly disappeared, especially after the
publication of the famous article by Marvin Minsky and Seymour Papert
“Perceptrons,” presenting a technical and critical analysis of the abilities of artificial
neural networks. One of the key arguments was the inability of a (single layer) neural
network to compute such simple logical function as XOR (Exclusive-OR):

The disappointment with neural networks, after the first wave of enthusiasm, was so
deep that neural networks have ceased to be a popular topic for scientific research. For
over 10 years (1970-1986) the scientific world actually ignored emerging independent
results with the backpropagation algorithm.

Neural networks — history 3

ANN history: second revolution

It wasn’t until 1986 that the paper “Learning representations by back-propagating

errors ” (Rumelhart, Hinton, Williams) stirred new interest, or perhaps the second
revolution in artificial neural networks. The error backpropagation algorithm allowed
for effective learning in multilayer neural networks, overcoming the XOR function
problem, and many other barriers.

This revolution resulted in an incredible amount of publications, projects, and
applications, applying neural networks in many areas of science and technology. Just
spelling out “artificial neural networks” almost guaranteed acceptance of a paper for
publication, or obtaining funding for a research project.

This revolution was called the connectionism.

Neural networks — history 4

ANN history: the second chill

In the late 1990s, the enthusiasm of the scientific world related to artificial neural
networks began to disappear. ANN have become stable technology, their properties
were well known, and new sensational reports ceased to appear.

The technical capabilities of artificial neural networks were limited by the then existing
computer technology. For implementing even a minimally complex calculation, a
multilayer network was needed, but training many layers with a large number of
neurons was computationally impractical (weeks, months, or years of calculations).
The view also dominated that the computational ability of networks with more than
one hidden layer did not exceed those networks with just one hidden layer.

It should be noted that the 1990s are also the beginning years of the internet
revolution. Access to the network and software resources were expanding, as were the
new capabilities they allowed. It was not yet the „ big data” era and creating neural
networks with larger capabilities was limited by the amount of data available. Existing
datasets stored thousands of samples at most, and the limit for obtaining more
interesting results was the compromise between the noise in data and avoiding
overfitting.

Neural networks — history 5

ANN history: third revolution — deep networks

Despite the vanishing enthusiasm of the scientific world for the artificial neural
networks, in the 1990s a number of new technologies were created, which were yet to
find wider applications. An example is a distributed representation where dedicated
neurons are responsible for coding separate aspects of an object representation (such
as shape or color). Another example is the LSTM network (Long Short-Term Memory)
that solves problems of modeling long sequences.

Another breakthrough began around 2006, when deep networks and effective
methods of teaching them began to appear. Initial such networks used unsupervised
learning algorithms and demonstrated the possibility of effective generalization based
on small data sets.

Since then, the mainstream has turned to exploitation new, huge data sets, but using
the methods successfully applied before, such as the multilayer perceptron and learning
with the backpropagation algorithm.

It should be noted that this breakthrough has become possible partly thanks to
progress in the development of computer technology. A significant share of it was due
to the emergence of the GPU graphics cards with thousand of cores, which are
intended for calculating image elements, but can be used for any calculations.

Neural networks — history 6

Datasets increase

Neural networks — history 7

Number in connections

1. Adaptive linear element (Widrow, Hoff, 1960)

2. Neocognitron (Fukushima, 1980)
3. GPU-accelerated convolutional network (Chellapilla et al.,

2006)
4. Deep Boltzmann machine (Salakhutdinov, Hinton, 2009a)

5. Unsupervised convolutional network (Jarrett et al., 2009)

6. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)
7. Distributed autoencoder (Le et al., 2012)

8. Multi-GPU convolutional network (Krizhevsky et al., 2012)
9. COTS HPC unsupervised convolutional network (Coates et al., 2013)

10. GoogLeNet (Szegedy et al., 2014a)

Neural networks — history 8

Increase in network size

1. Perceptron (Rosenblatt, 1958, 1962)

2. Adaptive linear element (Widrow, Hoff, 1960)
3. Neocognitron (Fukushima, 1980)

4. Early back-propagation network (Rumelhart et al., 1986b)
5. Recurrent neural network for speech recognition(Robinson,Fallside,1991)

6. Multilayer perceptron for speech recognition (Bengio et al., 1991)
7. Mean field sigmoid belief network (Saul et al., 1996)

8. LeNet-5 (LeCun et al., 1998b)
9. Echo state network (Jaeger, Haas, 2004)

10. Deep belief network (Hinton et al., 2006)

11. GPU-accelerated convolutional network (Chellapilla et al., 2006)

12. Deep Boltzmann machine (Salakhutdinov, Hinton, 2009a)
13. GPU-accelerated deep belief network (Raina et al., 2009)

14. Unsupervised convolutional network (Jarrett et al., 2009)
15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

16. OMP-1 network (Coates, Ng, 2011)
17. Distributed autoencoder (Le et al., 2012)

18. Multi-GPU convolutional network (Krizhevsky et al., 2012)
19. COTS HPC unsupervised convolutional network (Coates et al.,2013)

20. GoogLeNet (Szegedy et al., 2014a)

Neural networks — history 9

Neural networks — history 10

The perceptron

The perceptron is one of the first neuron models used in artificial neural networks
(ANN). It is a simple computational element implementing a weighted sum of many
inputs, combined with thresholding:

output =

0 if ∑

j wjxj ≤ threshold
1 if ∑

j wjxj > threshold

The perceptron is the simplest decision element, calculating decisions based on the
weighted sum of input variables. Choosing the appropriate weights w1, ..., wn and the
threshold value, we can model some simple decision-making schemes. Input signals
having a large positive effect on the desired output value are given large weight values,
and those inputs having a smaller effect on the output value are assigned smaller
weights.

And, more importantly, we can learn the right values of these parameters based on the
appropriate training set.

Neural networks — perceptron 11

Multilayer perceptron

Before we get to the methods of automatically training neural networks, let’s consider
a more complex case. A single perceptron can model making very simple decisions by
calculating weighted sums with thresholding. Since these calculations are quite trivial,
we can imagine many such elements connected together, for the purpose of calculating
more complex decisions. One possible such model is the multilayer perceptron
MLP.

MLP consists of a series of layers of neurons, of which the first (to which input signals
are connected) we call the input layer, and the last one (from which the output signals
are drawn) is called the output layer, and the intermediate layers (which can be many)
are called hidden layers.

Neural networks — perceptron 12

Multilayer perceptron (ctd.)

Thanks to its layered structure, the decision making model in the MLP can be much
more complex. Entry layer neurons, instead of making final decisions, may recognize
some elementary features of the input signal. Similarly, subsequent layers can calculate
more and more complex quantities, and the output layer neurons can make the final
decisions based on far more significant categories than raw input variables.

Neural networks — perceptron 13

Neural networks — perceptron 14

Neuron activation function

The perceptron activation formula can be rewritten into a slightly more convenient
form:

output = σ(wT · x + b) =

0 if (wT · x + b) ≤ 0
1 if (wT · x + b) > 0

where the form wT · x denotes the scalar product of the weights and input signal
vectors, the parameter b (bias) is the inverse of the threshold value, the entire value of
(wT · x + b) is called the weighted sum of inputs, and the function σ is called
activation function.

The activation function σ given by the above formula is called the step function.

Note that the bias parameter can be considered as the weight of an additional input
with a fixed value of 1. It then disappears from the formula, at a cost of a larger
network. It is also possible to use a network with the value of bias equal to 0 — in
other words without the bias — if we know that such network correctly models the
given decision-making process.

Neural networks — activation function 15

Sigmoid activation function

The presented step activation function can correctly model some decision making
processes, but is not suitable for automatic network training. If some weights, or bias,
are slightly different from optimal values, two cases are possible. Either the perceptron
gives the same response as for optimal values, and then the network will seemingly
work fine, but it is not possible to detect any difference and make even small
corrections. For data outside the training set we will obtain errors. Or the perceptron
will “jump” to another output value, and then the network will operate incorrectly, but
we will not be able to notice that the parameter values were close to correct.

step sigmoid tanh arctan

σ(x) =

{

0 iff x ≤ 0
1 iff x > 0

σ(x) =
1

1 + e−x

σ(x) = tanh(x)

=
ex − e−x

ex + e−x

σ(x) = tan−1(x)

Often used is the sigmoid activation function, also called the logistic curve.

Neural networks — activation function 16

Neural network architecture

The MLP multilayer perceptron discussed so far, more generally called a feedforward
network is an example of the neural network architecture — one of the most popular
— but not the only one.

Such a network consists of at least two layers: input and output, and, optionally, of
a number of intermediate layers (in the figure above there is one of them), also referred
to as the hidden layers. (They are not hidden in any special sense; the term “hidden”
only means that they do not belong to the external interface of the neural network.)

Neural networks — architecture 17

Other network architectures

Feedforward networks are simple and popular, but by no means they are the only
model of neural networks. At least equally interesting are recursive networks in
which the signal from neurons from further layers can be sent back to the initial layer.
Due to the signal propagation time resulting from nonzero excitation time of neurons,
such loops do not lead to infinite oscillations, they only create possibilities for
completely different computing processes.

Additions: examples of recursive networks.

Neural networks — architecture 18

Feedforward networks

The architecture of a feedforward network is directly related to its application.
A network to be used as a binary classifier of the objects described by six parameters
should have six neurons in the input layer, activated by the appropriate input
parameters. Its single output will be interpreted as the object class value (true or false).

Note that the network has all possible connections between the neurons of subsequent
layers. This is how a network is typically initialized. Then, during the training, some of
the connections may be turned off, by reducing their weights to zero, or near zero.

Neural networks — feedforward 19

Feedforward networks: example

Let’s now consider a specific neural network for handwriting recognition. The network
is to determine which decimal digit is depicted in a 28 × 28 raster image, grayscale
encoded.

The simplest approach is to use all
pixels of the image as separate input
signals. So the network input layer
should have 28 × 28 = 784 neurons.
They can be driven directly by the
appropriate image pixel brightness
values, for some reasons scaled to the
range of [0, 1]. The output layer will
have ten neurons representing
individual digits, with the threshold
set to 0.5.

Neural networks — feedforward 20

Feedforward networks: construction of internal layers

As we have seen, the construction of input and output layers, constituting the interface
of the neural network is determined by the use of the network and existing/required
external signals. The construction of the internal layer(s) requires more complex
considerations. On the one hand, the number of internal layers and neurons in them
determines the ability of the network to implement a specific calculation. A network
with too few neurons will not be able to implement complex processes. On the other
hand, a network with too many neurons will tend to learn very long and to overfit.

Generally, we want the inner layer to have fewer neurons than the input layer, to force
the network to generalize — build a more complex representation of input data.

The division of the internal neuron pool into layers is determined by other rules. The
traditional approach (until around 2010) was to have one or two internal layers,
depending on the complexity of the computation process. The rationale was that more
layers with the same pool of neurons would greatly extend the training, without
significantly increasing the ability of the network to implement complex processing.

Neural networks — feedforward 21

Neural networks — feedforward 22

Training neural networks — designations

We will use the following designations for the weights of the connections between
neurons: wl

jk will denote the weight of the connection from neuron k in (l − 1)th layer
to neuron j in lth layer:

Likewise, we will use bl
j and al

j, respectively, to denote the bias and activation of the
neuron j in the lth layer. In this notation, activation of the neuron j in layer l is given
by the formula:

al
j = σ(

∑

k
wl

jka
l−1
k + bl

j) in matrix algebra notation: al = σ(wlal−1 + bl)

Neural networks — training 23

Training Neural Networks — the cost function

Learning algorithms typically choose weights and bias values to achieve the minimum
of the following quadratic cost function, sometimes also referred to as the mean
square error (MSE):

C =
1

2n

∑

x
‖ y(x) − aL(x) ‖2

where n is the number of samples x of the training set, y = y(x) is the desired output
value, L is the output layer number (or the number of layers), and aL = aL(x) is the
activation vector of the network output for the input sample x.

The above formula can be treated as the average cost value C = 1
n

∑

x Cx of the
quadratic cost function values of all individual samples x: Cx = 1

2 ‖ y − aL ‖2.

The backpropagation algorithm presented below determines the error δl
j of the

computation of neuron j in layer l, and on this basis partial derivatives ∂C/∂wl
jk and

∂C/∂bl
j. As a result, updates for wl

jk and bl
j minimizing the cost function can be

computed by the maximum gradient method. Frequently the calculations are averaged
over a certain small batch of samples, which is called the stochastic gradient
descent method.

Neural networks — training 24

Training neural networks — the backpropagation algorithm

Step 0 (initialize): for the sample x set the input layer activations a1.

Step 1 (propagate): for subsequent layers l = 2, 3, ..., L calculate zl = wlal−1 + bl

and al = σ(zl).

Step 2 (output error): calculate the error vector δL = ∇aC ⊙ σ′(zL).
(the symbol ⊙ means the Hadamard product, available in Matlab as .*)

Step 4 (backpropagate error): going back, for subsequent layers
l = L, L − 1, ..., 3, 2, 1 calculate error vectors δl = ((wl+1)T δl+1) ⊙ σ′(zl).

Step 5 (corrections): The cost function gradient is given as ∂C
∂wl

jk
= al−1

k δl
j and

∂C
∂bl

j
= δl

j

so the negations of these gradients should be added as corrections to weights wl
jk

and biases bl
j, with some low learning rate η, providing stable learning (immunity to

noise in training data).

Additions: update formulas for mini-batch

Neural networks — the backpropagation algorithm 25

Neural networks — the backpropagation algorithm 26

Network training improvements

Humans learns much faster when they see they make big errors. Their reactions are
determined, and the corrections they make are significant. When the errors they make
become minimal, the learning process slows down. The question is whether a similar
phenomenon can be observed in training artificial neural networks.

As we saw in the back propagation algorithm, weights and bias corrections are
determined by the values of ∂C

∂in and ∂C
∂b , where a quadratic cost function is given by

the formula (again adjusted to the case when the desired output value is y = 1.0):

C =
(y − a(x))2

2

where a(x) = σ(wx + b) is the neuron activation value.

The above partial derivatives of the cost function can be calculated as proportional to
the derivative of the activation function a′(x). So the magnitude of the corrections
made in the training process are associated with the activation function derivative.

Neural networks — mean square cost function 27

The derivative of the sigmoid function

The derivative of a sigmoid function can be calculated as follows. (Note that that the
second derivative form is important in the training process. The backpropagation
algorithm calculates all activation values during the first propagation phase. They can
be stored by the algorithm, and used for quick calculation of derivative values in the
backpropagation phase.)

σ(x) =
1

1 + e−x

σ′(x) =
1

1 + e−x

1 − 1

1 + e−x

σ′(x) = σ(x) · (1 − σ(x))

$ gnuplot

sigmoid(x)=1/(1+exp(-x))

sigmoid_prime(x)=sigmoid(x)*(1.-sigmoid(x))

plot sigmoid(x),sigmoid_prime(x)
 0

 0.25

 0.5

 0.75

 1

-10 -5 0 5 10

sigmoid(x)
sigmoid_prime(x)

As can be seen, when the network is far from the desired value y = 0.0, the sigmoid
function is flat, and its derivative has very low values. For this reason, the training
progress is very slow when the network has large errors, and only accelerates in the
immediate vicinity of the target values.

Neural networks — mean square cost function 28

The cross-entropy cost function

The slowdown in multi-layer network training can be seen by running a small example:
http://neuralnetworksanddeeplearning.com/chap3.html#saturation2 anchor

This problem of network training slowdown can be solved by using, in place of the
mean square cost function, the following cross-entropy function:

C = −1

n

∑

x
[y ln a + (1 − y) ln(1 − a)]

where the sum is computed over all n training samples 〈x, y〉.

The sense of using this function results from some statistical properties that will not
be discussed here. Let us only note that the above function: (i) is non-negative, (ii)
goes down to zero near the correct solution (assuming that the desired value y = 0.0
and then a ≈ 0.0).

Neural networks — cross-entropy cost function 29

It can be obtained that the partial derivatives ∂C
∂w and ∂C

∂b are in this case proportional
to the difference between the correct output value and the neuron activation. This
causes larger updates when the network is far from desirable region, and reducing them
as we approach the solution.

The formula for the total cost (error) for all neurons j in layer L of the network:

C = −1

n

∑

x

∑

j

[

yj ln aL
j + (1 − yj) ln(1 − aL

j)
]

Neural networks — cross-entropy cost function 30

The total network output value vector interpretation

Neurons of the output layer of a multilayer neural network calculate their values
individually, which together constitute the network’s response to the input. Neurons
change their values smoothly between 0 a 1, but the sigmoid activation function
mostly goes to the extreme values of 0 or 1. We may expect one of the neurons to
definitely approach 1, and others to go to 0, or to have many neurons to
simultaneously approach 1.

The first case corresponds to the classifier function when the network response
indicates one specific output out of n possible, while the second case corresponds to
any network response function.

It is sometimes beneficial to replace the sigmoid activation function with another
function that determines the combined response of all neurons. Then, using the
network as a classifier, the vector of the network output values can be treated as the
probability distribution of choosing a specific output, instead of their individual
indication by a logistic function.

Neural networks — network output interpretation 31

Application of softmax neurons

The above characteristic of network outputs, which can be interpreted as probability
distribution, can be achieved by using in the output layer a different activation function
called softmax :

aL
j =

ezL
j

∑

k ezL
k

As can be seen, the activation value aL
j of a single neuron does not depend only on the

value of zL
j (weighted sum of inputs), but also on the activation values of all other

neurons. When the activation of one increases, then the activations of all other
neurons decrease.

It is easy to see that the sum of the activation values of all neurons is 1:

∑

j
aL

j =
∑

j ezL
j

∑

k ezL
k

= 1

Neural networks — softmax neuron layer 32

The cost function for softmax neurons

When using the softmax activation function it is appropriate to use another cost
function called the log-likelihood cost function, which has the value (for a specific
learning sample):

C = − ln aL
y

When the network correctly recognizes the value of y for this sample, then the value
aL

y will be close to 1 and the cost will be calculated as 0. When the network does not

recognize the sample correctly, then aL
y will be small, and the inverse of its logarithm

will be a large positive value.

It can be shown that the values of partial derivatives of the cost function relative to
weights and biases are proportional to the difference between the correct and
network-calculated output value, just as in the case of cross-entropy for the logistic
function.

So using the softmax output layer makes sense with the log-likelihood cost function,
just as using the standard sigmoid activation works well with the cross-entropy cost.
The advantage of the first combination is the interpretation of the result as
a probability distribution.

Neural networks — softmax neuron layer 33

Neural networks — softmax neuron layer 34

Overfitting in neural networks

An artificial neural network with many neurons, layers, and connections, has very many
parameters. These parameters make it possible to adjust the network response to the
desired function in many ways, of which only some (few) may be correct. Even worse,
when there are small errors (noise) in the training data, a chance to determine the
correct parameters decreases as the network learns, because it tends to match this
noise exactly.

This is a problem of overfitting, which we have already seen in different scenarios, and
which is one of major machine learning problems.

Neural networks — regularization 35

Regularization

The standard method of avoiding overfitting is to use a validation dataset,1 and stop
learning when the validation set error begins to increase, while the error on the training
set continues to decrease.

However, this is the input/output method, treating the learning algorithm like a black
box. It is sometimes possible to embed the overfitting avoidance in the learning
algorithm. One such technique is the regularization, which involves modifying the
cost function to force the network to train in a more desirable way (to make the
network function more regular).

1Of course, another standard method of avoiding or limiting overfitting is to increase the training set.

Neural networks — regularization 36

L2 Regularization

One of the most commonly used forms of regularization, called L2 regularization,
works by adding a positive component to the cost function according to scheme:

C = C0 +
λ

2n

∑

w
w2

where C0 is the original, non-regularized cost function.

The goal of this is to get the network to prefer small weight values. Large weights will
only appear if the original part of the cost function (non-regularized) decreases
significantly. The λ parameter is used to manage the compromise between the
tendency to minimize the main cost function, and obtaining low weight values.

The intuitive justification for regularization is usually the Ockham’s razor principle:
a model with smaller weights is considered simpler, and if it works as well as a more
complex model, then it usually will work better. In reality, however, the correct
application of regularization requires experimenting, in particular with the λ parameter.

Neural networks — regularization 37

Remarks on regularization

The effect of regularization is usually:

• avoiding overfitting,
• faster convergence to greater calculations accuracy,
• less sensitivity to the choice of initial values and avoidance of local cost functions

minima.

Note that the regularization factor in the formula given above includes weights, but
does not include the bias. So the bias, unlike the weights, can have a large value. This
is usually not a problem, which is why the bias is not included in the regularization
formula.

Neural networks — regularization 38

L1 Regularization

An alternative approach is to use the so-called L1 regularization according to the
formula:

C = C0 +
λ

n

∑

w
|w|

In general, L1 regularization works similarly to L2, enforcing smaller weight values.
However, L1 has some properties different from L2. With L1 regularization often the
result is a model with many weights equal/close to 0. This effect can be explained on
the diagram below. Because weight search space with L1 have the shape of an oblique
square, the contact point with the minimum of the cost function will often be on any
of the coordinate axes.

w
1

w
2

w*

w
1

w
2

w*

Neural networks — regularization 39

L1 and L2 Regularization

Terminological remark: In machine learning literature, the designations L1 and L2

are often used to denote the absolute and mean square cost functions, as well as,
the absolute value and mean square regularization. The context of using these two
signage systems are close, but they mean different things.

Neural networks — regularization 40

The dropout method

Dropout is a regularization method quite different from the previous ones. It consists
in repeatedly removing randomly selected neurons during training (temporarily). After
the learning phase with deleted neurons, these are restored, then another random set
of neurons removed, and learning continued. The final trained network works with all
original neurons.

For example, removing each time half of the neurons
from the selected hidden layer for training purposes,
in the actual application the network will have twice
as many active neurons as at the time of training.

This can be compensated by dividing all learned
weights of this layer by two.

The dropout procedure is a heuristic method and like other similar methods require
testing of the details of its use. However, overall, it produces similar effects to other
regularization methods.

Neural networks — regularization 41

There are several interpretations of this effect. Basic interpretation assumes that
individual neurons need to “learn” more reliable activation function (weights and bias)
because they cannot count on assistance from other neurons.

Multiple network training, however more expensive (because each dropout phase causes
a restart and initiates training from start, in a sense), it also creates an averaging
effect that eliminates overfitting, avoids the local minima of the cost function, and
makes the training result more independent from more or less (un)lucky initialization.

Neural networks — regularization 42

Initialization of weights
The selection of the initial values of all weights and bias can have significant impact
for the final effect of training, due to possible local cost function minima. Therefore,
random initialization of weights and bias is used as a minimum requirement. It is
unclear, however, what distribution this random initialization should use. In the
absence of a better idea, the default approach may be the normal distribution with the
mean of 0, and the standard deviation equal to 1.

However, it turns out that this is not an optimal method, and even a simple analysis
allows to find a better method of initializing weights and bias.

The problem arises when there are a lot of neurons in
a certain layer (typically this can be in the input layer). At
the initial configuration, with full connections, the activation
of the neurons of the next (second) layer is a sum of a large
number of elements, each with a random value with normal
distribution. The weighted sums of inputs of such neurons
will usually be high values and these neurons will for
a significant initial learning time be saturated.

This is the same phenomenon of initial learning slowdown that was solved by replacing
the cost function, but only for the output layer.

Neural networks — initialization of weights 43

For example, if there are a thousand neurons in the input layer, then we can expect
half of the inputs to have value 1 (and the other half 0), then the weighted sum at any
neuron in the second layer will have a normal distribution with zero mean but standard
deviation (from 500 activated inputs and the bias) equal to

√
501 ≈ 22.4. With high

probability this will be a number with the absolute value large enough so that the
activation of this (and each) second layer neuron will be very close to 0 or 1.

We can either leave the correction of this situation to the training process and ... wait,
or we can adjust the initial connection weights to rectify it.

In practice, a good solution is the initialization of the weights of each connection to
a neuron with nin input signals with normal distribution with mean 0 and standard
deviation equal to 1/

√
nin. In most cases, this results in faster initial network learning.

In some cases it also gives a better learning outcome (better generalization, i.e. lower
errors on the test set).

Initializing the value of the bias does not affect the learning speed, and they can be
initialized with a standard deviation of 1, or even initialized with a zero value.

Neural networks — initialization of weights 44

Hyper-parameters for training neural networks

The main parameters of a neural network are those that the network is able to
automatically learn: the set of weights and biases.

However, to build a network and even start a training process, a number of other
parameters have to be assigned: the number and type of neurons, the number of layers
and the division of neurons between the hidden layers, and the various parameters
related to the learning process such as: the learning rate η, the regularization
parameter λ, the mini-batch size m, etc. They are sometimes referred to as the
hyper-parameters.

An important difficulty in building and training neural networks is that all these
parameters affect the ability of training of networks, performing their calculations, and
achieving the desired accuracy and resistance to overfitting. There are no solid
methods for determining all these parameters, and often it is necessary to experiment
a little, to find the optimal (or at least a working) value for them. Unfortunately,
experimenting with all parameters at the same time is often impossible, because
a network with many parameters set incorrectly may not be making any progress at all.

To help with this situation, a number of heuristics exist for setting these parameters.

Neural networks — network training hyper-parameters 45

Neural network project management strategy

The first goal in a neural network project should be to achieve any non-trivial, i.e.
significantly better than random, learning effect. Having achieved this result, one can
start to fine-tune the individual parameters. However, it can be amazingly difficult to
achieve, especially for beginners, or for a new class of problems.

It is worth starting the project for a radically simplified problem (e.g. with a reduced
number of classes), the training set “cleaned” of all artifacts that can cause network
learning problems, network size and complexity near the minimum of what we expect
to be appropriate, and small learning mini-batches to shorten the time of those
preliminary experiments, and be able to respond more easily to phenomena appearing
in the process.

After getting the first indications that the network is learning the desired properties,
one can start experimenting with the hyper-parameters of the learning process,
including the cost function etc.

Neural networks — network training hyper-parameters 46

Hyper-parameter values: learning rate η

Recall that the learning rate η controls the
magnitude of updates in the backpropagation
algorithm.

Too small η will cause very slow learning.

Too high a value may cause the gradient
descend algorithm to jump around the
minimum point, not being able to reach it.

It is therefore useful first to get a border η value, from which the cost criterion starts
improving from the beginning. Starting with an arbitrary initial value, such as
η = 0.01, if improvement occurs, increase η according to the scheme: η = 0.1, 1.0, ...
until oscillations, or deterioration of the criterion, are encountered. If there was no
improvement from the beginning, only deterioration or oscillation, then reduce η
according to the scheme: η = 0.001, 0.0001, ..., until improvement is achieved.

After determining the η border value, one should specify the working value for
optimization. It should be smaller than the border value, eg. several times smaller.

Neural networks — network training hyper-parameters 47

Early stopping

Early stopping of the training process is
a technique of monitoring the progress
using a validation set. When the accuracy
calculated on the validation set stops
improving, we stop learning, even though
the accuracy may continue to improve on
the training set.

However, it is not always easy to use this method. The error curve is never a solid and
monotonic line, and to notice that the validation error stopped decreasing, it has to be
analyzed over a long period of time. It happens also that the validation error remains
at a certain level fairly long, and then decreases again.

Note that the early stopping method automatically determines the number of
learning epochs.

Neural networks — network training hyper-parameters 48

Tuning the learning rate η

Given the method of automatically stopping learning, we can improve slightly the
earlier procedure for determining the learning rate η. Instead of keeping it constant, we
can reduce it as network optimization proceeds.

Initially, the procedure should be as described above. After stopping, the learning rate
η should be reduced several times, and retry learning. It will almost always be possible
to further improve accuracy, however with a lower magnitude, corresponding to the
learning speed.

This process can be repeated many times, in fact as long as we are able to reliably
detect a real improvement of the learning criterion.

Neural networks — network training hyper-parameters 49

Hyper-parameter values: regularization parameter λ

There is no well-established method for selecting and optimizing the ratio
regularization parameter λ. It seems worth starting without regularization (λ = 0.0)
and first determine the η parameter.

After specifying a good value for η one can experiment with λ starting from an
arbitrarily selected value (e.g. λ = 1.0) and increasing or decreasing this value,
expecting the accuracy on the validation set to improve. After reaching a series of
good λ values, an attempt to fine-tune may be made, by gradually decreasing it.

After determining a good value of λ, one can resume tuning the value of η.

Neural networks — network training hyper-parameters 50

Training deep networks
For a long time working with feedforward ANNs, mainly shallow networks were built,
typically with one hidden layer. This was because of the fact that a network with one
or two hidden layers can model any function. Further, teaching deeper networks is slow.

However, it could intuitively be expected that a deep network, with many hidden
layers, could potentially have more capabilities than a simpler shallow network.
Additional layers could, for example, enable the network to create additional levels of
abstraction for the problem analysis, instead of generating the final results in one step.
This is particularly important in the forthcoming big data era, when more and more
complex issues are undertaken, and we expect neural networks to be able to
understand and learn the regularities hidden in this data.

Neural networks — deep networks 51

The problem of vanishing gradient

An attempt to experimentally analyze the learning process of networks of a larger
number of hidden layers can show, that in the normal backpropagation learning process
the gradients of network parameters (weights and bias) decrease dramatically in the
subsequently added layers.

It turns out that this is a common phenomenon. In deep networks, when training by
error backpropagation with the cross-entropy cost function, the gradients controlling
the speed of weight updates, determining the speed of learning, disappear dramatically.

Neural networks — deep networks 52

The problem of vanishing gradient (continued)

The question is whether this vanishing gradient effect is a significant problem in
network learning? Note that the neuron weights were initially initialized with random
values. Thus, the signal fed to the network input is initially completely neutralized by
these random weights. For the network to begin to learn effectively, the weights of the
first layer must quickly grow to reasonable values.
However, they change extremely slowly.

An explanation of the vanishing gradient problem can be obtained by analyzing
a trivially simple deep network, with single neurons in all layers.

The following formula can be derived for the partial derivative of the cost relative to
the bias in the first layer:

∂C

∂b1
= σ′(z1) w2σ

′(z2) w3σ
′(z3) w4σ

′(z4)
∂C

∂a4

Neural networks — deep networks 53

The problem of vanishing/exploding gradient
To study the behavior of the expression
from the previous slide, recall the
logistic function derivative formula:

σ′(x) =
1

1 + e−x

1 − 1

1 + e−x

$ gnuplot

sigmoid_prime(x)=1/(1+exp(-x))*(1-1/(1+exp(-x)))

plot sigmoid_prime(x)
 0

 0.25

 0.5

 0.75

 1

-10 -5 0 5 10

sigmoid_prime(x)

As we can see, it has quite small values, especially for arguments significantly different
from zero. Multiplying many such small factors. like in the formula in the previous
slide, we get very small gradient values.

With high weights — either learned or enforced in the algorithm — it is also possible to
get very large gradient values, which is called the problem of exploding gradient.

As a result, it can be concluded that the error gradient in training deep feedforward
networks is unstable, and does not lead to effective learning.

So how can one achieve effective learning in deep networks?

Neural networks — deep networks 54

Convolution networks

The problem of the vanishing (unstable) gradient of the network parameters is not the
only problem obstructing the construction and training of deep neural networks.
Among others, the problem of overwhelming computational complexity for a long time
hindered the creation of deep networks. These problems can be solved by building
specialized networks, whose design leads to effective learning.

There are a number of deep network models that give good learning outcomes. Among
them are the convolution networks, especially useful for image processing. This is
due to the operation principle of the convolution operation, processing a large data
set with a smaller filter, gradually moving along the set, and processing it section by
section. But this type of processing is also used in others areas such as audio signal
processing and other measurement data, as well as processing natural language
utterances, and others.

The deep convolution network consists of a number of layers with designated
functions, enforced by the specific structure and type of connections. Its construction
takes advantage of three main ideas: local receptive fields, sharing weights, and image
areas pooling.

Neural networks — convolution networks 55

Convolution networks: why?

In the earlier example of analyzing images of handwritten digits (the MNIST database)
of 28x28 pixels each, the network was used with the first (input) layer of 784 (=28x28)
pixels, with a full set of connections to all neurons of the second (hidden) layer. This
makes sense from the point view of processing complete instances of input data. But
from the image processing point of view this is strange because the second layer is
designed to learn how to process pixels which are both adjacent and far apart.

The input layer is seen as
a one-dimensional row of neurons,
not reflecting their neighborhood.

Neural networks — convolution networks 56

The convolution layer

Building a convolution network we will now consider the neurons of the input layer to
correspond to the pixels of the image to be processed. These pixels, in turn, are
considered to represent local receptive fields, which are small areas of the image.

The convolution layer will be the second layer, processing each local receptive field
with a convolution filter. This filter is a small array, processing the neurons of each
local receptive field neurons, mapping to a single second layer neuron. For example, the
convolution filter may be 5x5 neurons in size. Instead of the full connection from the
input layer to the convolution layer, there will now only be connections from the local
receptive field neurons to the single neuron of the convolution layer.

Neural networks — convolution networks 57

The convolution processing

Processing an image with a convolution filter works by applying the filter to the first
section of the image, and computing the filter output value producing the output
value. Then the filter slides by some distance, and processing repeats.

The slide distance — called the stride — showed in the pictures above, is 1 neuron.

Neural networks — convolution networks 58

The arithmetic of the convolution

Consider the specific example: 28x28 pixel image processing network for processing the
handwritten digits of the MNIST database.

Suppose we apply a 5x5 convolution matrix. Assuming that the matrix will be shifted
by a one pixel stride in each direction (horizontal and vertical), there are 24 positions
of the convolution matrix in both dimensions, and therefore the method of sliding the
convolution matrix will produce the output data for 24x24 neurons, and such will be
the size of the convolution (first hidden) layer.

Thus, only 25 weights and one bias value support the connection between the first and
second network layers. This is the fundamental difference between this architecture and
the full set of connections between these layers, which would require almost half
a million weights (28x28x24x24) and 576 biases. Network training can thus be effective.

Note also that the second layer could be the exact same size as the processed image.
This would require applying the center of the convolution matrix to the edges of the
image, partially outside its boundary, and feeding it with values of non-existent pixels.
We could also make the convolution layer much smaller by applying the filter with
a stride of two (or more) neurons, producing the convolution layer of size 12x12.

Neural networks — convolution networks 59

Shared weights of the convolution layer

The convolution filtering is very well known and popular in image processing. Various
types of convolution filters are employed: blurring, sharpening, edge detection, and
others.

So which convolution filter will be used in our network? The key idea used in deep
convolutional networks is the sharing of weights. All individual convolutional filters
processing the local receptive fields will learn the same set of 25 weights (plus bias).
This speeds up the training, and forces the weights to adjust to the type of processing
that is identical for all the image receptive fields.

In effect, the convolution layer we have just created will learn to recognize some
feature in the image. This feature can have a simple interpretation, like a central blob,
or an edge running at a specific angle, but it can also be some hard to describe pattern
(although must be simple, due to the size of the convolution filter). The rectangular
structure of neurons produced by the convolution filtration is called the feature map.

It is important to see that the feature our network learns to recognize is going to be
random — due to the random initialization of the filter’s weights and bias. At the same
time, this learned feature will be detected regardless of its location within the image.

Neural networks — convolution networks 60

Multiple convolution filters

We have seen, that the convolution layer will learn to recognize some random image
feature. This feature may be more of less useful in interpreting the whole image. But
we can maximize the chance of obtaining useful feature-detecting filters, by creating
several/many of them. Due to randomization, we can expect them each to be different.

In the above image we have three feature maps. They are trained in parallel, thus
together forming the second (convolution) layer of our network (which is also the first
hidden layer).

Neural networks — convolution networks 61

Multiple convolution filters (ctd.)

Three feature maps depicted above is just an example. Many more can be created.
Here are example filters trained on the MNIST database:

Neural networks — convolution networks 62

Pooling layers

The feature maps produced in the convolution layer recognize small features in the
original image. They are, however, almost as large each, as the original image (this
depends on the stride size, plus the margins resulting from the size of the convolution
filter). We can say, that the feature maps are created at full resolution of the original
image. But we are, in fact, interested in finding macroscopic features in the image. We
need a way to aggregate the image in a way which preserves the features learned.

The next network layer can be build to serve this purpose. One commonly used
aggregation, or pooling, function is the max, computing the maximum pixel value
over some area of the large feature map.

Neural networks — convolution networks 63

Pooling layers (ctd.)

In the presented example the pooling of 2x2 neuron areas was applied. This is
equivalent to reducing the image pixel size in half, from 24x24 to 12x12. Each feature
map from the convolution layer should be pooled in the same way, resulting in the
following structure:

Instead of max-pooling, another aggregation function could have been used. An
example of such is the L2 pooling, which computes the square root of the sum of
squared activations of neurons in the pooled area. The optimal version can be
determined by experimenting with them all.

Neural networks — convolution networks 64

Completing the network

Assuming we decided that the network layers created thus far should be sufficient to
recognized the hand-written digits, we can finish up by adding the output layer
consisting of ten neurons, each trained to respond to a different digit, as before:

The neurons from the output layer are expected to recognize the digit contained in the
input image by examining the features identified by the network. For this reason, each
output neuron must have connections from all the neurons in the preceding network
layer (pooling). In other words, there must be a full connection initialized between the
final two layers.

Neural networks — convolution networks 65

Further details

When building a complete network for recognizing handwritten digits from the MNIST
database, it makes sense to use softmax neurons in the last layer with the
simultaneous use of the log-likelihood cost function. Using twenty parallel filters in the
convolution layer, the network looks like this:

An additional, fully connected layer of neurons with a sigmoid activation function aims
to integrate the information generated by individual convolution filters, allowing the
final softmax neuron layer to make the final decision.

Neural networks — convolution networks 66

Other variants

The classification of handwritten digits in the MNIST database has been studied
extensively, and many classifiers and scientific papers have been produced to
demonstrate effective techniques to improve the results obtained. Among them are:

• Application of the second set of convolution and grouping layers, analyzing the
results from the first such layer. This has an effect introducing an additional level of
abstraction to detect features image even more macroscopic. However, the second
convolutional layer has input all outputs combined as input of the first grouping
layer.

• Use a larger dataset. Although there is often no additional data, as in the case of
the MNIST database, it is possible to “multiply” the data by transforming existing
images, such as: rotations and shifts. In addition to greater learning efficiency, such
an extension of the data set also reduces the tendency to overfitting.

• Using the ensemble learning method, ie training several independent networks, and
adding a voting layer to select the result by majority method. The application of
this method is based on the assumption that different networks can make different
errors and such errors can be eliminated.

• Use of other activation functions, such as tanh, or especially relu.

Neural networks — convolution networks 67

33 cases of misclassification on 10,000 MNIST images (the upper index shows the
actually written digit, and the lower index shows the digit recognized by the deep net):

Neural networks — convolution networks 68

Training convolutional networks

Convolutional network training can be carried out similarly to training a multilayer
perceptron with a full set of connections between successive layers. That is, it is
possible to use error backpropagation, and optimization using the stochastic greatest
gradient method.

The backpropagation procedure has to be adapted to the specifics of the convolutional
network, but this is not a problem. Moreover, due to the independence of the
convolutional network elements, the learning can proceed in a parallel manner, and in
addition to the use of multi-processor units and/or multi-cores, it is possible to use
multiple processors on the GPU graphics card.

Neural networks — convolution networks 69

Neural networks — convolution networks 70

Transfer learning

Transfer learning is a group of techniques aiming at use the knowledge gained
during machine learning of one task, or ready-made models created in its course, for
another machine learning task.

This approach, which has related mechanisms in psychology, has been considered in
machine learning research since the 1970s. Currently, it is more and more often used in
relation to deep networks as an alternative to building any application, i.e. training a
neural network from scratch.

Transfer learning is generally used:

• to save time and resources from having to train multiple machine learning models
from scratch to complete similar tasks,

• as an efficiency saving in areas of machine learning that require high amounts of
resources such as image categorization or natural language processing,

• to negate a lack of labeled training data held by an organization, by using
pre-trained models.

Transfer learning 71

Transfer learning in convolution networks

An example of the use of transfer learning is the use of neural networks for image
recognition. If the deep network has been trained on a large training set, usually the
initial layers of the network recognize basic graphic features such as points and edges,
further layers recognize more complex elements, specific shapes that are elements of
different images, and more complex structures useful for recognizing specific objects.

Let’s note, that for the custom training of the adopted deep model to be possible, the
size and format of the new samples must be compatible with the architecture of the
initial layer of the network, which does not undergo training. Failing that,
a preprocessing step would be required to adjust such size and format.

Transfer learning 72

Transfer learning in convolution networks (ctd.)

Although the last layer is fine-tuned to recognize the objects for which the network was
built, only this layer can be trained during transfer learning, leaving the initial layers
unchanged. To make it possible, it is necessary to freeze the trained parameters of all
the layers which are to be preserved. This allows the network to use the knowledge
accumulated from the large training set used to build the original network, and
complete the network using a smaller set of new images.

Examples of convolutional deep models trained to recognize certain classes of images,
and available over the Internet:

• VGG-16
• VGG-19
• Inception V3
• XCeption
• ResNet-50

There also exist trained deep models used in natural language processing.

Transfer learning 73

Transfer learning 74

Resources

This presentation contains some materials from the following:

1. Michael A. Nielsen: Neural Networks and Deep Learning, Determination Press, 2015
http://neuralnetworksanddeeplearning.com/

2. Ian Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning, MIT Press, 2016
http://www.deeplearningbook.org

Neural networks — resources 75

Neural networks — resources 76

