
Naval Research Laboratory
Washington, DC 20375-5320

UNIX Tools
Course Notes

Michael G. Vonk
Center for Computational Science
(202)767-3884
michael.vonk@nrl.navy.mil

Instructor:

July 31, 1998

UNIX Tools

1. Introduction..1

2. Bourne Shell Scripts..2
2.1. Shell Script Format and Execution...2
2.2. Variable Assignment and Substitution4
2.3. Shell Metacharacters ..4
2.4. Passing Arguments to a Script ...5
2.5. Script I/O...6
2.6. Control Structures ..8
2.7. Arithmetic Operators...12
2.8. Signal Trapping ..13
2.9. Debugging Shell Scripts ..15

3. Regular Expressions...16

4. The sed Editor ...19
4.1. Invoking the sed Editor..20
4.2. Command Format and Line Addressing..............................20
4.3. Basic sed Commands..22
4.4. sed Examples ...23

5. The awk Utility...24
5.1. Invoking the awk Utility..25
5.2. Command and Script Format ...25
5.3. Variables and Separators...27
5.4. Basic awk Commands..27
5.5. awk Examples ...28

6. Miscellaneous Commands...29

7. Archival and Compression Utilities ..32
7.1. The tar Utility ...32
7.2. The compress and uncompress Commands....................34

8. Program Development..35
8.1. Program Development Cycle ...35
8.2. Common Compiler and Linker Options...............................36
8.3. Execution Timing and Profiling ...37
8.4. Syntax Checkers (lint) ..39

July 31, 1998

UNIX Tools

9. Managing Projects Using make ..40
9.1. Simple make Example ...41
9.2. Makefile Description..43
9.3. Rules ...44
9.4. Macros..45
9.5. Suffix Rules..47
9.6. Include File Dependencies ..48
9.7. Invoking make ..49
9.8. Common make Mistakes...50

10. References ...51

11. Summary ...52

1

UNIX Tools

1. Introduction

There are many UNIX tools that enable users to efficiently solve
a wide range of problems. This class provides an introduction
to several of these commonly used tools. Further information
can be found in the references sited at the end of the notes and
in the appropriate man pages.

Topics to be covered include:

• writing shell scripts
• using regular expressions to match patterns of characters
• creating and modifying files using sed and awk

• using miscellaneous commands to manipulate data
• archival and compression utilities
• program development
• managing projects using make

The goal of this class is to be an extension of the topics covered
in "Introduction to UNIX." A companion page containing exam-
ples used in this class is located at:

http://amp.nrl.navy.mil/code5595/
ccs-training/unix-tools/companion-page.html

2

UNIX Tools

2. Bourne Shell Scripts

While the C shell is typically used for interactive processing as
it has more interactive functionality, the Bourne shell is better for
writing shell scripts as it has a simpler syntax and more pro-
gramming features.

Shell scripts are useful for:

• automating frequently performed and complex tasks
• performing tasks at specific times or regular time intervals

Further information can be found in the sh man page.

2.1. Shell Script Format and Execution

The basic format of a shell script is as follows:

Example 1 compile-and-run

#!/bin/sh
#
Example script for "UNIX Tools" class.
Compiles and executes a C program.
#
Usage: % compile-and-run

gcc -o myprog main.c fun.c prod.c -lm
myprog

3

UNIX Tools

Scripts are executed by default under the Bourne shell, except
when the first characters of the first line of the script are:

script will be run under C shell
#! command script will be run under command

Shell scripts can be executed by:

1. Making the script executable and naming it on the com-
mand line:

% chmod u+x script-name
% script-name

This assumes the current working directory is in your
path, otherwise the following can be used:

% ./ script-name

A common place for storing script files is in a bin direc-
tory under your home directory, and then to include
~/bin in your path.

2. Running the script in a subshell

% sh script-name

3. Running the script in the current shell

% source script-name
or

$. script-name (from Bourne shell)

4. Running the script as a batch job using the batch , at , or
cron commands

4

UNIX Tools

2.2. Variable Assignment and Substitution

Variable assignments use the following format:

variable= value

where value is one of the following:

ddd decimal number

’ string ’ string (all enclosed characters protected)

" string " string ($, ‘ substitution performed within string,
special characters can be protected using \)

‘ command‘ command output*

$var value of var (or nothing, if undefined)

${ var } same as above

2.3. Shell Metacharacters

The following metacharacters can be used as file name expan-
sion characters:

* Matches zero or more occurrences of any character
(does not match ". " as first character of a filename)

? Matches any single character

[ccc] Matches one of the enclosed characters—a range
of characters may be specified as [a-z]

[! ccc] Matches any character not enclosed in []

* In NCSA Telnet (Macintosh), the backquote may have been remapped to
escape, check under Preferences (Global) in the Edit Menu

5

UNIX Tools

2.4. Passing Arguments to a Script

Arguments can be passed from the command line to a shell
script and are assigned to the following special variables:

$0 name of command

$1 - $9 positional parameters

$# number of positional parameters

$* list of all positional parameters

Only nine positional parameters are available (although on
some systems, this limit is removed). The shift command
allows access to additional positional parameters—$2 becomes
$1 , $3 becomes $2 , etc. The original first positional parameter
is no longer available. (There is no unshift command.)

Example 2 show-arguments

echo "Command: $0"
echo "Number of arguments: $#"
echo "Argument list: $*"
echo ""
echo "Argument #1 = $1"
echo "Argument #2 = $2"
echo "Argument #3 = $3"
echo "Argument #4 = $4"

6

UNIX Tools

2.5. Script I/O

2.5.1. Writing Output

The echo command writes a string to standard output:

echo string

Special characters can be protected using \. The following spe-
cial characters are frequently used:

\c does not create a new line after writing string
(must be last character in string)

\n create a new line

2.5.2. Reading Input

The read command reads a line from standard input:

read variable-list

Input words are assigned to successive variables. Any remain-
ing words are assigned to the last named variable.

Example 3 read-name

echo "Enter name (First MI Last): \c"
read first mi last

echo " "
echo "First Name : $first"
echo "Middle Initial : $mi"
echo "Last Name : $last"

7

UNIX Tools

2.5.3. I/O Redirection

The following I/O redirection operators can be used:

> file Redirects output to file
>> file Appends redirected output to file
< file Redirects input from file
<< marker "Here" document—accepts shell input up

to first occurrence of marker on a line by
itself

command1 | command2
Pipes command1’s standard output into
command2’s standard input

The following illustrates the use of a "here" document:

Example 4 here-document

name="Michael"

cat > hello.c <<EOF

#include <stdio.h>
main() {
 printf("Hello, $name...\n");
}

EOF

gcc -o hello hello.c
hello

8

UNIX Tools

2.6. Control Structures

A list of commands can be conditionally executed based on a
specified condition, which can take one of the following two
forms:

1. Result of the test command:

 test condition
or
 [condition] (the spaces are required)

2. Exit status of a command (or of the last command in a list)

The test result or exit status which is stored in $? is zero for
true (success) and non-zero for false (failure).

Logical operators include:

-a and
-o or
! not

Comparison operators include:

String Numeric
= -eq

!= -ne
string (true if not null) -gt

-ge
-lt
-le

9

UNIX Tools

Tests can be performed on files and strings, including:

-f file true if file exists and is an ordinary file
-d file true if file exists and is a directory
-z string true if string length is 0
-n string true if string length is not 0

See the test(1) man page for further details.

2.6.1. Conditional Statements

The if statement uses the following syntax:

if condition
then

command-list
else if condition-2

command-list
else

command-list
fi

The else if and else constructs are optional. elif can be
used as a shorthand for else if .

Example 5 check-user

if who | grep -s $1 > /dev/null
then
 echo $1 is logged in
else
 echo $1 not available
fi

10

UNIX Tools

The case statement provides multi-way branching:

case variable in
pat1) command-list

 ;;
pat2 | pat3) command-list

 ;;
 *) command-list
 ;;
esac

2.6.2. Looping Statements

The while and until contructs have the following syntax:

while condition
do

command-list
done

until condition
do
 command-list
done

The for loop has the general form:

for var in list
do

command-list
done

If ’in list ’ is omitted, the loop is executed once for each posi-
tional parameter (i.e. ’in $* ’ is assumed).

11

UNIX Tools

There are two constructs for jumping out of loops:

2.6.3. Using the exit Command to Exit Shell Scripts

The exit statement will exit the current shell script. It can be
given a numeric argument which is the script's exit status. If
omitted the exit status of the last command executed is used.
For example:

exit 1

2.6.4. The && and || Operators

The && operator can be used to execute a command if the previ-
ous command is successful:

command1 && command2

The || operator can be used to execute a command if the previ-
ous command fails:

command1 || command2

break terminates execution of innermost enclosing
loop, causing execution to resume after the
nearest done statement

continue causes execution to resume at the while ,
until or for statement which begins the
loop containing the continue command

12

UNIX Tools

For example:

Example 6 test-execution

2.7. Arithmetic Operators

The shell does not have any arithmetic features built in, so you
must use the expr command, as shown below:

variable = ‘expr expression ‘

For example:

index = ‘expr $index + 1‘

Further details can be found in the expr(1) man page.

Execute myprog--print a message if
execution is successful

myprog && echo "Execution successful"

Execute myprog--print a message if
execution fails

myprog || echo "Execution failed"

13

UNIX Tools

2.8. Signal Trapping

The trap command can be used to catch or ignore operating
system signals:

trap ' command-list ' signal-list

The commands in command-list are executed when the signal
is trapped and then control is returned to the place at which it
was interrupted.

If command-list is not specified, then the action taken on
receipt of any signal in signal-list is reset to the default
action. If command-list is an explicitly quoted null command
(' ' or " "), then the signals in signal-list are ignored.

The following signals are commonly trapped:

 0 shell exit (for any reason, including end of file)
 1 hangup
 2 interrupt (^C)
 3 quit (causes program to produce a core dump)
 9 kill (cannot be caught or ignored)
15 terminate

The kill command can be used to send a signal to a script:

% kill [- signo] pid

14

UNIX Tools

Using kill without a specified signal number results in the sig-
nal number 15 being sent. The full list of signal numbers can be
shown as follows:

% kill -l

To check what traps are currently set, use trap by itself:

% trap

Example 7 signal-trap

Remove a temporary file if script is
interrupted

temp=/tmp/file.$$
trap 'rm $temp; exit' 0 1 2 3 15
 .
 .
 .

15

UNIX Tools

2.9. Debugging Shell Scripts

The following debugging options can be used either on the com-
mand line or with the set command:

-e in non-interactive mode, exit immediately if a com-
mand fails

-x print commands and their arguments as they are
executed

-v print shell input lines as they are read

-n read commands but do not execute them

For example:

$ sh -x script-name argument-list

16

UNIX Tools

3. Regular Expressions

Regular expressions are used to match a pattern of characters.
Metacharacters (special characters not interpreted literally) are
used to match a sequence of actual characters.

Not all utilities use the same set of metacharacters:

• basic set used in grep and sed

• extended set used in egrep (extended grep) and awk

Metacharacters used in regular expressions may be the same as
those used as shell metacharacters, but have different meanings.

Table 1 Basic Set of Metacharacters (grep and sed)

. Any single character (except newline)
* Zero or more occurences of previous regexp
[ccc] Any one of a class of characters:

 "^ " when first, reverses the match
 "- " when not first or last, indicates a range
 "] " when first, is a member of the class

Other characters (except "\ ") lose their meaning
^ As the first character in a regular expression,

matches the beginning of the line
$ As the last character in a regular expression,

matches the end of the line
\{ n, m\} Range of occurrences of preceding regexp (sed and

grep only)
\ Escapes the following metacharacter

17

UNIX Tools

Basic Examples

The grep command prints lines from a file that contain a speci-
fied regular expression:

% grep ’ regular-expression ’ filename

Since regular-expression can contain metacharacters also
used by the shell, regular-expression is enclosed in single
quotes.

For example, the following regular expressions could be used:

80.86 "80236 ", "80386 ", etc.
❑.* ❑ longest possible* string between spaces
❑[^ ❑]* ❑ shortest possible string between spaces
[a-zA-Z] any alphabetic character
^$ blank lines
^❑*$ blank lines possibly containing spaces
❑❑*$ lines ending in one or more spaces
\.$ lines ending in a period
❑\{2,4\} two to four spaces

* A regular expression tries to match the longest string possible.

18

UNIX Tools

Table 2 Extended Set of Metacharacters (egrep and awk)

Extended Examples

❑+ one or more spaces
80[23]?86 "8086 ", "80236 " or "80386 "
(UN|A)IX "UNIX" or "AIX "

Seemingly Incomprehensible Example

(^| ❑)["[{(]*book[]})"?!.,;:’s]*(❑|$)

+ One or more occurrences of the previous regular
expression

? Zero or one occurrences of the previous regular
expression

| Specifies that either the preceding or following reg-
ular expression can be matched

() Groups regular expressions

19

UNIX Tools

4. The sed Editor

The sed editor is a "non-interactive," stream-oriented editor
commonly used to:

• make a series of changes (such as search and replace)
across a number of files

• filter data for use with other applications
• edit very large files that would be too slow to edit interac-

tively

It is "non-interactive" in that sed commands are read from a
script rather than being entered interactively, and it is stream
oriented in that input flows through the program and is directed
to standard output—the input file itself is not changed.

sed loops through each input file as follows:

• reads one line of input into a buffer
• executes all applicable commands on the buffer
• writes buffer contents to standard output

All editing commands (unless line addressing is used to restrict
the lines affected) are applied in order to every line of input.

input line buffer

input

output

sed-script

20

UNIX Tools

4.1. Invoking the sed Editor

The sed utility can be invoked by specifying sed instructions
on the command line or by placing them in a sed script:

% sed [-e] ’ instruction-list ’ input-file
% sed -f script-file input-file

Each line of input is written, perhaps modified, to standard out-
put (which can be redirected, using ">"). To suppress this, the
-n option can be used. Selected lines can then be output using
the p command.

4.2. Command Format and Line Addressing

Command format:

[address1 [, address2]][!] command

An address can be:

• a regular expression enclosed in slashes
• a line number (not reset between input files)
• a $ which denotes the last line

There can be 0, 1, or 2 addresses specified:

• 0 command applied to all lines
• 1 command applied to specified lines
• 2 command applied to specified range of lines

An exclamation point following an address can be used to exe-
cute a command on all lines except those specified.

21

UNIX Tools

For example:

/lunch/ command execute command on all lines con-
taining the string "lunch"

1,10 command execute command on lines 1-10

12,$ command execute command on all lines
starting at line 12

1,/^$/ command execute command on all lines up
to the first blank line

/dinner/! command execute command on all lines not
containing the string "dinner"

Comments can be included in sed scripts by prefixing them
with ’#’. (Some systems allow comments only on the first line.)

Commands may be grouped using {} , allowing the nesting of
ranges and multiple commands to be executed on a single range.

address {
command1

 .
 .
 .

commandn
}

A common sed error is extraneous blanks at the end of a com-
mand—extra spaces at the end are not permitted. sed prints
"Command garbled " when it doesn’t understand a command.

22

UNIX Tools

4.3. Basic sed Commands

Table 3 Basic sed Commands

* text may be continued over new lines using "\ ".

a Append text following each line specified*:
[address]a\
text

c Replace specified lines with text . If a range of
lines is specified, replace the entire range with a sin-
gle copy of text *:

[address1][, address2]c\
text

d Delete line (do not write to standard output):
[address1][, address2]d

i Insert text before each line specified*:
[address]i\
text

p Print specified lines (causes duplicate printing
unless -n specified on command line):

[address1][, address2]p

s Substitute pat2 for pat1 on specified lines:
[add1][, add2]s/ pat1 / pat2 / flags

The "g" flag changes all occurrences on each line
y Translate each character in string1 to correspond-

ing character in string2 :
[add1][, add2]y/ string1 / string2 /

23

UNIX Tools

4.4. sed Examples

To delete all completely blank lines from a file:

% sed -e ’/^$/d’ blanks.dat > noblanks.dat

To trim trailing spaces at the end lines from a file:

% sed -e ’s/ *$//’ trailing-blanks.dat

To substitute one string for another everywhere it is found:

% sed 's/Unix/UNIX/g' chapter1.txt > new.txt

To print only the lines containing a specified pattern:

% sed -n -e '/lunch/p' todo.dat

To make a series of substitutions across several files:

Example 8 multiple-changes

#!/bin/sh

for file in *.c
do
 sed -e ’s/^#include "a.h"/#include "b.h"/
 s/start=10/start=20/
 ’ $file > $file.new
 mv $file.new $file
done

24

UNIX Tools

5. The awk Utility

The awk utility is designed to make information retrieval and
text manipulation easy. awk can be used to perform a variety of
data processing tasks, including:

• generating reports
• filtering data for use with other applications
• reformatting data

awk is a pattern matching programming language which is best
used on files with some kind of structure. It allows you to use
the structure of the file in writing procedures for inserting and
extracting data.

awk takes a line of input, executes each of the instructions from
the script file, and writes the processed line to standard output.

A newer version of awk, called nawk (for new awk), is available
on some systems. Also available from the FSF is GNU awk,
known as gawk, which implements all of the features of nawk,
with many new features.

input line buffer

input

output

awk-script

25

UNIX Tools

5.1. Invoking the awk Utility

The awk utility can be invoked by specifying awk instructions
on the command line or by placing them in an awk script:

% awk ’ instructions ’ file-list
% awk -f script file-list

Output can be redirected as follows:

% awk -f script file-list > output-file

5.2. Command and Script Format

Commands have two parts—a pattern and a procedure:

pattern { procedure }

If the pattern matches the current line, the procedure is exe-
cuted. Patterns can be:

• regular expressions enclosed in slashes
• relational expressions (such as $2=100)

If no pattern is specified, the procedure is applied to all lines. If
no procedure is specified, all lines matching the pattern are
printed.

26

UNIX Tools

Scripts can be made up of three sections:

BEGIN executed before any data is read; used to set
variables and to define record and field sep-
arators

main section made up of patterns to be searched for in
the input data and actions to be taken

END executed after last input line has been pro-
cessed; useful for printing report totals

A typical awk script looks like the following:

Multiple patterns can be specified as follows:

pat1 && pat2 and
pat1 || pat2 or
pat1 , pat2 range of lines

BEGIN {procedure}

pattern { procedure }
pattern { procedure }
pattern { procedure }

END {procedure}

27

UNIX Tools

5.3. Variables and Separators

By default, each input line is a record and each word within a
record is a field. The following variables are used with records
and fields:

RS record separator (default is newline)
NR current record number
FS field separator (default is spaces or tabs, can

also be reset using the -F option)
NF number of fields in current record
$0 represents the entire line
$1 , $2 , ... represent each word in the line

5.4. Basic awk Commands

Variable Assignment

Two types of variables are commonly used—integers and
strings. Variable assignment occurs as follows:

total = 0
total = total + $1
string = "Hello, world"

Printing

Printing commands include print and printf .

For example:

print $1, $2
printf("%10d\n", total)

28

UNIX Tools

Two variables control how printing occurs:

ORS Output Record Separator (default is a new-
line)

OFS Output Field Separator (default is a space)

Flow Control

Flow control statements include if , while , and for .

5.5. awk Examples

Print the number of lines in a file:

% awk ’END {print NR}’ filename

Print the last field of every input line:

% awk ’{print $NF}’ filename

Print every line with more than four input fields:

% awk ’NF > 4’ filename

Print the second field divided by 100 and erase the fourth field:

% awk ’{$2/= 100; $4= ""; print}’ filename

Print all the lines between two patterns:

% awk ’/ pattern1 /,/ pattern2 /’ filename

29

UNIX Tools

6. Miscellaneous Commands

The commands in this section are useful for manipulating files.

Cutting Columns or Fields from a File

% cut -c columns file

Options:

-f fields cut tab delimited fields
-d char specify delimiter

% ls -l | cut -c1-10
% cut -f1 table-data
% cut -d: -f1 /etc/passwd

Pasting Files Together

% paste file1 ... filen

Options:

-d char specify delimiter (default is a tab)

% paste names positions > roster

30

UNIX Tools

Translating Characters

% tr string1 string2

This will translate characters found in string1 to correspond-
ing character is string2 .

Options:

-d delete characters in string1
-s squeeze repeated characters in string2 to

single characters

% tr '[a-z]' '[A-Z]' < roster
% tr '\11' ' ' < roster (’\11 ’ is a tab)
% tr -d '\11' < roster
% tr -s ' ' ' '

Sorting Files

% sort [options] file

Options:

-u remove duplicates
-r sort in descending order
-n sort numerically
+n sort on field n
-t specify field delimiter (default is a space or

tab)

% sort roster
% sort +1n roster
% sort +2n -t: /etc/passwd

31

UNIX Tools

Removing Consecutive Duplicate Lines from a File

% uniq filename

Options:

-d list duplicates, but don't remove them

% uniq -d duplicates

32

UNIX Tools

7. Archival and Compression Utilities

The utilities described in this section can be used to manage
groups of files and compress them.

7.1. The tar Utility

The tar (short for tape archiver) utility can be used to group
sets of related files into a single large file for easy storage and
transportability. (tar is typically used to create archive datasets
on disk rather than archive tapes.)

7.1.1. Archiving Files

tar can be used to archive entire directory structures or individ-
ual files. The following archives a directory and all its subdirec-
tories:

% tar -cvf misc.tar misc

To archive a set of individual files, the following is used:

% tar -cvf filename .tar file-specifier

Options used in archiving files:

-c creates a new tar file
-v verbose mode
-f filename specifies a tar file name

Note Issue the tar command from a directory other than
the one being archived—otherwise the tar dataset
may contain itself.

33

UNIX Tools

7.1.2. Listing Archive Contents

The table of contents for a tar dataset can be displayed using
the -t option as follows:

% tar -tf misc.tar

7.1.3. Extracting Files From tar Archives

The tar command can also be used to extract files from tar
datasets. The basic format is as follows:

% tar -xvf misc.tar

The extracted files will have their original subdirectories, filena-
mes, protections, and modification times.

To extract a specific directory, use:

% tar -xvf filename .tar directory-name

This will extract the entire directory specified. If the directory
does not exist, it is created, otherwise, the files are replaced.

34

UNIX Tools

7.2. The compress and uncompress Commands

The compress command can be used to reduce file storage.
Source code and English text files can typically be compressed
50-60%. Compressed files can be restored to their original form
using the uncompress utility.

The following will compress all the text files in the current direc-
tory:

% compress *.txt

The specified files will be compressed in place and given the
extension ".Z ". The set of files can then be uncompressed as fol-
lows:

% uncompress *.txt.Z

Groups of files are quite often tarred and then compressed
resulting in a file with the extension ".tar.Z ". These files can
be uncompressed and detarred as follows:

% tar -cvf misc.tar misc
% compress misc.tar

% uncompress misc.tar.Z
% tar -xvf misc.tar

35

UNIX Tools

8. Program Development

8.1. Program Development Cycle

The basic program development cycle is as follows:

% vi hello.c
% gcc hello.c
% a.out

C compilers (cc) are available on most UNIX systems and are
located in the standard path. (The examples in this section,
however, use Gnu’s gcc compiler.)

Compiling and linking are performed in one step by default.
Executable files are named a.out by default. To rename execut-
ables, use the -o option:

% gcc -o hello hello.c

Compiling several programs and then linking (including the
math library) separately:

% gcc -c main.c prod.c fun.c
% gcc -o myprog main.o prod.o fun.o -lm

Programs can be executed by simply entering their filename:

% myprog

If, however, the current directory is not in your path variable,
you can execute it as follows:

% ./myprog

36

UNIX Tools

8.2. Common Compiler and Linker Options

The following option are often used with the cc and gcc com-
pilers:

-c Compiles but skips link step. Generates an object file
named "filename .o ". This option is useful for compil-
ing several modules and linking them later.

-o filename Names output file (executable files are named "a.out " by
default).

-g Generates symbol table for use with the dbx debugger
(overrides -O). For separate compilation and linkage,
make sure to use -g on both steps.

-p Prepares object files for profiling with prof.

-I pathname Adds pathname to list of directories in which the C pre-
processor searches for #include files with relative path-
names.

-l x Links in library lib x.a found in /lib , /usr/lib , or
/usr/local/lib . To specify some other library, you
must specify its full path,
e.g. -l/usr/people/smith/mylib.a

-L directory Adds directory to beginning of list of directories in
which to search for libraries.

37

UNIX Tools

8.3. Execution Timing and Profiling

8.3.1. The time Command

The time command can be used to quickly analyze program
performance. time requires no special compilation or linkage
options and can be used as follows on any executable program,
script, or command:

% time myprog
1702.4u 14.6s 48:19 59% 0+10496k 1+2io 9pf+0w
%

Output from the time command is comprised of the following:

• Time spent on user code (seconds)
• Time spent executing system code on behalf of user (sec-

onds)
• Time to completion (minutes:seconds)
• Percentage of machine resources used
• Average shared (program) memory + private memory

(kilobytes)
• Number of reads + writes
• Number of page faults + swap-outs

38

UNIX Tools

8.3.2. The prof Utility

The prof utility can be used to produce an execution profile of
a program. The -p option must be specified on the cc or gcc
command to link in the prof libraries:

% gcc -o othello othello.c -p

prof correlates the symbol table from the executable program
with the profile file (mon.out , by default) produced when the
program is executed and displays the percentage of time spent
in each routine, number of times the routine was called, and
number of milliseconds per call:

% gcc -o othello othello.c -p
% othello
% prof othello

 %time cumsecs #call ms/call name
 42.9 269.29 227259 1.18 _createResponseList
 13.6 354.66 mcount
 11.7 427.77 55725499 0.00 .mul
 8.0 477.65 22284595 0.00 _strcmp

 .
 .
 .

 0.0 627.35 682 0.00 _strlen
%

39

UNIX Tools

8.4. Syntax Checkers (lint)

The lint utility detects features of C programs that are likely to
be bugs, non-portable, or wasteful. It also performs stricter type
checking than does the C compiler:

% lint othello.c

Problems noted include:

• unreachable statements
• loops not entered at the top
• automatic variables declared and not used
• logical expressions with constant values

Function calls are checked for inconsistencies such as:

• functions that return values in some places and not in oth-
ers

• functions called with varying numbers of arguments
• functions that pass arguments of a type other than the type

the function expects to receive
• functions whose values are not used
• calls to functions not returning values that use the non-

existent return values of the function

lint is typically available on all UNIX systems.

40

UNIX Tools

9. Managing Projects Using make

The make utility uses instructions provided in a user written
description file (makefile) to:

• Automate the program development process
• Eliminate unnecessary recompiling of unchanged code

The makefile is used to record dependency relationships. make
compares the modification time of a dependency with that of the
target and, if newer, rebuilds the target.

Once the makefile is written, the compilation and linkage pro-
cess is as simple as:

% make

make searches for a description file named makefile or
Makefile in the current directory (Makefile is the convention
since capital letters appear before lowercase in ls output).

Note Source programs should first be divided into indi-
vidual files for each routine (the csplit utility can
be used to do this)

41

UNIX Tools

9.1. Simple make Example

The C program which will be used throughout this section con-
sists of the following routines:

main
prod
fun

The following diagram shows the dependencies between the
executable program, object files, and source files.

The executable myprog depends on main.o , prod.o , and
fun.o , each of which depend on their respective source files.

myprog

main.o prod.o fun.o

main.c prod.c fun.c

42

UNIX Tools

These dependency relationships are illustrated in the following
makefile.

Example 9 makefile #1

This example shows that the executable myprog depends on the
three object files. Each object file depends on its source file. The
gcc commands shown are used to build each target.

This makefile can then be used and the executable run as fol-
lows:

% make
% myprog

myprog: main.o prod.o fun.o
gcc -o myprog main.o prod.o fun.o -lm

main.o: main.c
gcc -c main.c

prod.o: prod.c
gcc -c prod.c

fun.o: fun.c
gcc -c fun.c

43

UNIX Tools

9.2. Makefile Description

A makefile specifies the sequence of operations to be performed
and dependency relationships.

Makefiles consist of 3 parts:

1. Rules Define targets to be built, their depen-
dencies, and a set of commands used to
build the target

2. Macros Define variables for use within make
3. Suffix Rules Specify a set of commands for building a

file with one suffix from another file with
the same basename but a different suffix

Comments can be including by prefixing them with #

make processes targets as it encounters them using its depth-
first dependency scan. Target entries not encountered during
dependency scan are not processed.

44

UNIX Tools

9.3. Rules

makefile rules have the following syntax:

target: dependency [dependency ...]
<TAB> command

where:

• target Defines the object of the operation
• dependency Files on which the target depends
• command Specifies how to build the target (multi-

ple commands can be specified on sepa-
rate lines or by separating them with
semicolons)

If a dependency has been updated more recently than the target,
make updates the target by running the command.

If you don't specify a list of commands to build a target, make
attempts to use a user supplied or default suffix rule.

45

UNIX Tools

9.4. Macros

Macros are simple variables used to simplify makefiles and are
defined as follows:

macro=value

Macros can be referenced in any of the following ways:

$(macro)
${macro}
$x (if macro name is only one character long)

For example, the executable name and the list of object files in
Example 1 could be replaced by macros as follows:

EXE = myprog
OBJ = main.o prod.o fun.o

$(EXE): $(OBJ)
 gcc -o $(EXE) $(OBJ) -lm

Undefined macro references are replaced by empty strings.

Macro values can be overridden using command line options.
For example:

% make "EXE=testprog"

46

UNIX Tools

In addition to user defined macros, there are several internally
defined "dynamic" macros, three of which are shown below:

Example 10 makefile #2

Symbol Value
$? List of dependencies newer than target
$@ Name of the current target
$< Name of the dependency, as if selected by

make for use with an implicit rule

EXE = myprog
OBJ = main.o prod.o fun.o
CC = gcc
CFLAGS = -c
LDLIBS = -lm

$(EXE): $(OBJ)
$(CC) -o $@ $(OBJ) $(LDLIBS)

main.o: main.c
$(CC) $(CFLAGS) $?

prod.o: prod.c
$(CC) $(CFLAGS) $?

fun.o: fun.c
$(CC) $(CFLAGS) $?

47

UNIX Tools

9.5. Suffix Rules

Suffix rules are used to specify how to build files with one suffix
from files with the same basename but with a different suffix.
Suffix rules are used:

• when there is no rule for a specified target
• when you don't specify a command to build a target

Adding suffix rules:

1. Add the suffixes of both the target and dependency files
to the suffixes list, if necessary, by providing them as
dependencies to the .SUFFIXES special target

2. Add a target entry for the suffix rule

Example 11 makefile #3

EXE = myprog
OBJ = main.o prod.o fun.o
CC = gcc
CFLAGS = -c
LDLIBS = -lm

SUFFIXES: .o .c

$(EXE): $(OBJ)
$(CC) -o $(EXE) $(OBJ) $(LDLIBS)

.c.o:
$(CC) $(CFLAGS) $<

48

UNIX Tools

Default suffix rules are listed in the file:

/usr/include/make/default.mk

Using default suffix rules, Example 3 can be simplified to:

Example 12 makefile #4

9.6. Include File Dependencies

The following example shows dependency relationships for
"include" files:

Example 13 Include File Dependencies

EXE = myprog
OBJ = main.o prod.o fun.o
CC = gcc
LDLIBS = -lm

$(EXE): $(OBJ)
$(CC) -o $(EXE) $(OBJ) $(LDLIBS)

EXE = myprog
OBJ = main.o prod.o fun.o
CC = gcc
LDLIBS = -lm

$(EXE): $(OBJ)
$(CC) -o $(EXE) $(OBJ) $(LDLIBS)

$(OBJ): header.h

49

UNIX Tools

9.7. Invoking make

Make is invoked as follows:

% make [options] [target]

Commonly used options include:

-f filename uses named file for make description file
instead of makefile or Makefile

-n displays commands make is to perform
without executing themuseful for debug-
ging makefiles

By default, make attempts to build the first target it encounters.
By specifying a target, it is possible to update an individual tar-
get.

In some cases, relying on the use of default suffix rules and mac-
ros can completely eliminate the need for a makefile.

50

UNIX Tools

9.8. Common make Mistakes

Problems frequently encountered when using make:

• Forgetting to begin command lines with a tab (spaces can-
not be used)

• Forgetting to continue non-comment lines with a back-
slash (\)

• Confusing dependencies—using a source file name where
an object file name should be used, etc.

Suggestion:

• Develop a template makefile using default rules, macros,
etc. and modify this as necessary for new projects

51

UNIX Tools

10. References

Many online and hardcopy references were used in creating this
class. Among the best of these are the following:

• "sed and awk"
by Dale Dougherty
O’Reilly and Associates, Inc.
ISBN: 0-937175-59-5

• "Managing Projects with make"
by Andrew Oram & Steve Talbott
O’Reilly and Associates, Inc.
ISBN: 0-937175-90-0

• the various man pages

52

UNIX Tools

11. Summary

It is important to know what tools you have available to you,
and how to use those tools. There are several hurdles to using
these tools:

1. learn how the tools work

2. apply UNIX regular expression syntax

3. get the knack of script writing

Hopefully these notes will help you efficiently overcome these
hurdles.

